

Pseudo Goldstone Boson (PGB)

Inspired by QCD where we see **light scalars** without problems of naturalness:

 $m_{\pi}, m_K, m_{a_0}, \dots << M_P$

Reason: they are <u>composite</u> states at $\Lambda_{\rm QCD} << M_P$,

defined by the scale at which the strong gauge-coupling becomes large:

Furthermore,

the lightest states in QCD are the (pseudo) scalars:

(spin=0 particles like the Higgs)

Pseudo-Goldstone bosons (PGB) in QCD

QCD, considering only two quarks in the massless limit,

$$\left(egin{array}{c} u_L \ d_L \end{array}
ight)$$
 , $\left(egin{array}{c} u_R \ d_R \end{array}
ight)$

has an accidental global symmetry:

$SU(2)L \times SU(2)R$

It is broken by the quark condensate: $\langle q\bar{q} \rangle \neq 0$

$SU(2)_{L} \times SU(2)_{R} \rightarrow SU(2)_{V}$ Isospin

3 Goldtones:

π^+, π^-, π^0 Massless!!

In reality, they are not massless since quark masses break explicitly SU(2)L \times SU(2)R giving the pions a mass: $m_{\pi}^2 \propto m_a$

Lets try the same for the Higgs Assume that there is a New Strong sector (QCD-like) at around the TeV-scale:

Similar but slightly different approach:

Arkani-Hamed, Cohen, Georgi

Little Higgs

Easy in an ideal collider:

Do it as we do with pions in QCD: probe it with photons at high-momentum

Parametrization of deviations from SM Higgs couplings

Contino et al 10

$$\mathcal{L} = \frac{M_V^2}{2} V_\mu^2 \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - m_f \bar{\psi}_L \psi_R \left(1 + c \frac{h}{v} \right) + \cdots$$

SM Higgs: a = b = c = 1

Composite Higgs:

Giudice, Grojean, AP, Rattazzi 07

$$a = \sqrt{1 - \frac{v^2}{f_{\star}^2}} \qquad b = 1 - \frac{2v^2}{f^2} \qquad c = \sqrt{1 - \frac{v^2}{f^2}}$$

Scale related to the composite-scale

Since its couplings are different, it's **NOT** a true Higgs

The Higgs plays an important role in the consistency of the SM Without the physical Higgs: $M_h \to \infty$

Unitarity is lost at high-energies

Loops are not finite!

With the Higgs calculability is recovered:

Finite results!

Composite Higgs only partly does the job of a true Higgs

Extra states needed to fully unitarize (for consistency)!

Composite Higgs only partly does the job of a true Higgs

In the limit a=0 (~ **Higgsless**) composite Higgs not at all a Higgs Resonances do all the job!

Extra states needed to fully unitarize (for consistency)!

Extra resonances (as in QCD) $M_{W^{(n)}} \simeq rac{2 \text{ TeV}}{\sqrt{1-a^2}}$

Maximal degree of compositeness not allowed by EWPT

$$\hat{\Gamma} = \frac{g^2}{M_W^2} \left[\Pi_{W_3}(0) - \Pi_{W^+}(0) \right]$$

$$\hat{S} = g^2 \Pi'_{W_3B}(0)$$

Put a bound on the scale of compositeness: f>500 GeV

Higgsless (a=0) disfavored

If the Higgs is **composite**, how it will change LHC predictions?

Bad news: Reduction of rates!

see also, Grojean, Espinosa, Muhlleitner 10

Higgs coupling measurements ~ 20-40%

recent studies Lafaye, Plehn, Rauch, Zerwas, Duhrssen 09

ILC would be a perfect machine to test this scenario: effects could be measured up to a few %

Genuine properties of the **composite** nature of the Higgs

I) WLWL -scattering grows at high energy

2) Double-Higgs production grows at high energy

In the best cases " 3σ signal significance with 300/fb collected at a 14 TeV LHC"

Contino et al 10

What about indirect signatures?

As in QCD, detecting other hadrons was also an indication of pion compositeness

But very difficult to calculate the spectrum in strongly-interacting theories

Recent progress:

Explicit weakly-coupled approaches to PGB Higgs

Picture from G.F. de Teramond

"Sexier" approach to composite Higgs:

Higgs as an "hologram"

Contino,Nomura,AP 03

Maldacena 98

The 4D composite properties of the Higgs are due to its 5D nature (AdS/CFT correspondence)

we will see it later...

One of the Main Messages:

Once a **Higgs-like** state is found, it will be crucial to determine its role in EWSB

e.g. where it **sits** in this plane!

One of the Main Messages:

Once a **Higgs-like** state is found, it will be crucial to determine its role in EWSB

e.g. where it **sits** in this plane!

A rough perspective of different theoretical scenarios:

