European School of HEp, 2010 , Raseporg, Finland

A huge variety of phenomena

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Still only partially solved ...

Data \leftrightarrow Theory

${ }^{\text {"I }}$ It is a huge mistake to theorize before one has data - One tends to twist fact to suit theory, instead of theory to suit fact"

Sherlock Holmes (2009)

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

Disclaimer

Focus on QCD for collider physics

Factorization, Hard Processes
Jets and Matching
Monte Carlo Event Generators
Underlying Event, Hadronization, Min-Bias, ...
Still, some topics not touched, or only briefly
Heavy flavor physics (e.g., B mesons, J/Psi, ...)
Physics of hadrons, Lattice QCD
Heavy ion physics
DIS
New Physics
Prompt photon production, polarized beams, forward physics, diffraction, BFKL, ...

Overview

1. Fundamentals of QCD
2. QCD in the UlBraviolet
3. QCD in the Infrared
4. Monce Carlo Generabors
5. Jels \& Makching
6. Getting (Kick)started with PYTHIA 8

QCD
 Lecture 1

Fundamentals

Before QCD

Some Theorems

E.g., Lorentz inv., unitarity and the optical theorem

$$
S S^{\dagger}=1 \Rightarrow \sigma_{\mathrm{tot}}(s)=\sum_{X} \int \mathrm{~d} \Phi_{X}\left|M_{X}\right|^{2}=\frac{8 \pi}{\sqrt{s}} \operatorname{Im}\left[M_{\mathrm{el}}(\theta=0)\right]
$$

"something will happen"
note: includes "no" scattering

$$
\text { Total } \sigma=\begin{gathered}
\text { Sum over everything } \\
\text { that can happen }
\end{gathered}=\begin{gathered}
\text { "Square Root" of } \\
\text { nothing happening }
\end{gathered}
$$

Before QCD

Some Theorems

E.g., Lorentz inv., unitarity and the optical theorem
$S S^{\dagger}=1 \Rightarrow \sigma_{\text {tot }}(s)=\sum_{X} \int \mathrm{~d} \Phi_{X}\left|M_{X}\right|^{2}=\frac{8 \pi}{\sqrt{s}} \operatorname{Im}\left[M_{\mathrm{el}}(\theta=0)\right]$
"something will happen"
note: includes "no" scattering

$$
\text { Total } \sigma=\begin{gathered}
\text { Sum over everything } \\
\text { that can happen }
\end{gathered}=\begin{gathered}
\text { "Square Root" of } \\
\text { nothing happening }
\end{gathered}
$$

+ Some models
E.g., potential models, Regge theory, Pomerons, string models, the early parton model, ...

After QCD

Some Theorems

E.g., Lorentz inv., unitarity and the optical theorem

$$
S^{\text {Something will happen" }} \begin{gathered}
\text { "som } \\
\text { note: includes "no" scattering }
\end{gathered} \quad \sigma_{\text {tot }}(s)=\sum_{X} \int \mathrm{~d} \Phi_{X}\left|M_{X}\right|^{2}=\frac{8 \pi}{\sqrt{s}} \operatorname{Im}\left[M_{\mathrm{el}}(\theta=0)\right]
$$

More Theorems

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

+ Factorization, Perturbative Quantum Field Theory,
\Rightarrow Resummation, Coherence, Infrared Safety, ...
+ Lattice Discretization

+ Phenomenological Models

+ Some models
E.g., potential models, Regge theory, Pomerons, string models, constituent quark model, ...
+ More models
Soft / non-perturbative effects
Fragmentation models
Diffraction models, Min-Bias models, soft Underlying-Event models
Soft final-state interactions, hydrodynamics, ...
Approximations to higher-order perturbative effects
Jet (sub)structure and multiple emissions: shower models Multiple parton interactions: "hard" UE models Hard Diffraction (e.g., diffractive Higgs), ...
work in progress interesting inputs from LHC

QCD as Discovery Physics

1951: the first hint of colour

Discovery of the Δ^{++}baryon

Meson-Nucleon Scattering and Nucleon Isobars*
Keith A. Brueckner
Department of Physics, Indiana Universily, Bloomington, Indiana (Received December 17, 1951)
satisfactory agreement with experiment is obtained. It is concluded that the apparently anomalous features of the scattering can be interpreted to be an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with spin $\frac{3}{2}$, isotopic spin $\frac{3}{2}$, and with an excitation of 277 Mev .
\sim 1960: Eighlfold Way $\left|\Delta^{++}\right\rangle=\left|u_{\uparrow} u_{\uparrow} u_{\uparrow}\right\rangle$???

Symmetric in space, spin \& flavor Antisymmetric in ???

Isospin: Wigner, Heisenberg Strangeness ('53): Gell-Mann, Nishijima Eightfold Way ('61): Gell-Mann, Ne'eman Quarks ('63): Gell-Mann, Zweig, (Sakata)

The Δ Baryon

1951: the first hint of colour

Discovery of the Δ^{++}baryon

Meson-Nucleon Scattering and Nucleon Isobars*
Keith A. Brueckner
Department of Physics, Indiana University, Bloomington, Indiana (Received December 17, 1951)
satisfactory agreement with experiment is obtained. It is concluded that the apparently anomalous features of the scattering can be interpreted to be an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with spin $\frac{3}{2}$, isotopic spin $\frac{3}{2}$, and with an excitation of 277 Mev .

$$
\text { 1966: }\left|\Delta^{++}\right\rangle=\varepsilon_{i j k}\left|u_{i \uparrow} u_{j \uparrow} u_{k \uparrow}\right\rangle
$$

Symmetric in space, spin \& flavor Antisymmetric in a new (\geq 3D) Quantum Number

+ postulate only overall singlets observed in nature E.g., | $\left.u_{R} U_{R}\right\rangle$ not a "physical" particle

The Width of the π^{0}

Δ^{++}, Δ^{-}, and s^{-}

Strictly speaking, we only know $\mathrm{N} \geq 3$
$\pi \rightarrow Y \gamma$ decays
Get pion decay constant f_{τ} from

$$
\pi^{-} \rightarrow \mu^{-} v_{\mu}
$$

$\Rightarrow \Gamma\left(\pi^{0} \rightarrow \gamma^{0} \gamma^{0}\right)_{\mathrm{th}}=\frac{N_{C}^{2}}{9} \frac{\alpha_{\mathrm{em}}^{2}}{\pi^{2}} \frac{1}{64 \pi} \frac{m_{\pi}^{3}}{f_{\pi}^{2}}=7.6\left(\frac{N_{C}}{3}\right)^{2} \mathrm{eV}$
See, e.g., Ellis, Stirling, \& Webber, "QCD and Collider Physics", Cambridge Monographs

"R"

$$
\begin{aligned}
R= & \frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& =n_{u}\left(\frac{2}{3}\right)^{2}+n_{d}\left(-\frac{1}{3}\right)^{2}
\end{aligned}
$$

Question: why does $\pi^{0} \rightarrow \gamma^{0} \gamma^{0}$ go with $N_{c}{ }^{2}=\left\{\begin{aligned} 2\left(N_{C} / 3\right) & q=u, d, s \\ 3.67\left(N_{C} / 3\right) & q=u, d, s, c, b\end{aligned}\right.$ and R only with N_{c} ?

"R"

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\left\{\begin{aligned}
2\left(N_{C} / 3\right) & q=u, d, s \\
3.67\left(N_{C} / 3\right) & q=u, d, s, c, b
\end{aligned}\right.
$$

So What?

New Physics Pipeline

Data	Phenomenolog ical Models	
Discriminating Observables	\leftrightarrow	(Solvable) Theory
Fits	Individual Essential Features	
Quark Model, Eightfold Way, ...	Complete description	

Gauge Group ($=$ Local inkernal space) Special Unitary group in 3 (complex) dimensions, SU(3) (Group of 3×3 unitary complex matrices with det=1)

Gluons

One gauge boson for each linearly independent such matrix $3^{2}-1=8$: gluons are octets

Quarks
One quark color for each degree of $\operatorname{SU}(3)$
3 : quarks are triplets (e.g., vectors on which matrices operate)

Chromodynamics

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

Covariant Derivative

$$
\begin{aligned}
D_{\mu i j} & =\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a} \\
& \Rightarrow \text { Feynman rule } \xi^{\mu}
\end{aligned}
$$

Gell-Mann Matrices ($T^{a}=\lambda a / 2$)
$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
$\lambda^{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}}\end{array}\right)$

Interactions in Colour Space

Quark-Gluon interactions

$$
\begin{gathered}
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\mathrm{A}_{1}
\end{gathered} \underset{\Psi_{\mathrm{R}}}{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}=\underset{\boldsymbol{\Psi}_{G}}{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}
$$

Interactions in Colour Space

Quark-Gluon interactions

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

z Decay:

$\sum_{\text {colours }}|M|^{2}=$ m

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

z Decay:

$\sum_{\text {colours }}|M|^{2}=$ mmm $\underbrace{}_{q_{i} \backslash}$

$$
i, j \in\{R, G, B\}
$$

$$
\begin{aligned}
& \propto \delta_{i j} \delta_{j i}^{*} \\
& =\operatorname{Tr}\left[\delta_{i j}\right] \\
& =N_{C}
\end{aligned}
$$

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Quick Guide to Colour Algebra

Colour fackors squared produce Eraces

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

Quick Guide to Colour Algebra

Colour fackors squared produce Eraces

$$
\begin{gathered}
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
\end{gathered}
$$

Quick Guide to Colour Algebra

Colour fackors squared produce Eraces

$$
\begin{gathered}
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \\
\sum_{c, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
\end{gathered}
$$

(from lectures by G. Salam)

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Structure constants of $\mathrm{SU}(3)$:

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

$$
-g_{s} f^{A B C}\left[(p-q)^{\rho} g^{\mu \nu}\right.
$$

$$
+(q-r)^{\mu} g^{\nu \rho}
$$

$$
\left.+(r-p)^{\nu} g^{\rho \mu}\right]
$$

Antisymmetric in all indices
All other $f_{i j k}=0$

Gluon self-interaction

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT
(a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling did not run, this would be absolutely true
(e.g., N=4 SYM)

Conformal QCD

No ruhning

$$
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=0
$$

This simplification (QCD at fixed coupling) already captures some of the important properties of QCD

Conformal QCD

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet P_{T} to the "hard scale"

See, e.g. $\begin{array}{r}\left.\text { Plehn, Rainwater, PS: PLB645(2007)217 } \begin{array}{r}\text { Plahn, Tait: 0810.2919 [hep-ph] } \\ \text { Plwall, de Visscher, Maltoni: } \\ \text { JHEP 0902(2009)017 }\end{array}\right\}\end{array}$

Scaling Violation

In real QCD

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right) \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{aligned}
$$

The coupling runs logarithmically with the energy

Asymptotic freedom in the ultraviolet

Infrared slavery (confinement) in the IR

Asymptotic Freedom

The Nobel Prize in Physics 2004
"for the discovery of asymptotic freedom in the theory of the strong interaction"

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to each other, the force is so weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart: the force becomes stronger when the distance increases."

Asymptotic Freedom

QED:

charge screening

QCD:

also has charge
screening

Quark loops
But only dominant if > 16 flavors!

Asymptotic Freedom

QED:

 charge screeningQCD:
color "leaking"

Gluons carry color
Dominant if < 16 flavors!

Asymptotic Freedom

At High Energies

QCD is weak \rightarrow quarks and gluons almost free
Smaller coupling
\rightarrow Perturbation theory better behaved Lecture 2: QCD in the ultraviolet
\rightarrow Changes in jet shapes
High $-p_{\perp}$ jets narrower than low $-p_{\perp}$ ones
Important for jet calibration (e.g., smaller "out-of-cone" corrs)
(Freedom or Unificalion?)
Decreasing coupling approaches EW ones ...

UV and IR

At current scales Coupling actually runs rather fast

Explodes at a scale somewhere below

$$
\approx 1 \mathrm{GeV}
$$

So we usually give its value at a unique reference scale that everyone agrees on

The Fundamental Parameter(s)

QCD has one fundamental parameter

$$
\alpha_{s}\left(m_{Z}\right)^{\overline{\mathrm{MS}}} \quad \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)}
$$

... and its sibling

$\Lambda_{\mathrm{QCD}}^{\left(n_{f}\right) \overline{\mathrm{MS}}}$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}
$$

... And all their cousins

$$
\alpha_{s}\left(m_{z}\right)_{L O} \alpha_{s}\left(m_{z}\right)_{N} n_{L O} \alpha_{s}\left(m_{z}\right)_{N^{n} L O+N^{n} L L} \alpha_{s}\left(m_{z}\right)^{D I S} \alpha_{s}\left(m_{z}\right)^{D R}, \ldots
$$

$$
\Lambda^{(3)} \Lambda^{(4)} \Lambda^{(5)} \Lambda_{C M W} \Lambda_{F S R} \Lambda_{I S R} \Lambda_{M P I}, \ldots
$$

Other parameters

The number of flavors
(and quark masses)

$$
b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi}
$$

R

Other parameters

Emergent phenomena

Cannot guess non-perturbative phenomena from perturbative QCD \rightarrow "Emerge" due to confinement

Hadron masses, Decay constants, Fragmentation functions Parton distribution functions,

Difficult/Impossible to compute given only knowledge of perturbative QCD
\rightarrow Lattice QCD (only for "small" systems)
\rightarrow Experimental fits (for reference)
\rightarrow Phenomenological models (for everything else)
\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision = higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
\rightarrow Next Lectures
- Put all its eggs in one basket and didn't solve QCD

