CERN Summer School 2010, Raseborg, Finland

QCD
 Lecture 5
 Jets and Matching

P. Skands

"Seeing" vs Defining Jets

2

How many jets can you see?

"Seeing" vs Defining Jets

2

Do you really want to ask yourself this for 10^{9} events?

How many jets can you see?

Jets as Projections

Projections to jets provides a universal view of event

There is no unique or "best" jet definition

You decide how to look at event

The construction of jets is inherently ambiguous

1. Which particles get grouped together? JET ALGORITHM (+ parameters)
2. How will you combine their momenta? RECOMBINATION SCHEME (e.g., 'E' scheme: add 4-momenta)

Jet Definition

Ambiguity complicates life, but gives flexibility in one's view of events \rightarrow Jets non-trivial!

Types of Algorithms

1. Sequential Recombination

Take your 4-vectors
Combine the vectors that have the lowest 'distance measure ${ }^{\prime}$

Different names for different distance measures

Durham $k_{T}: \min \left(k_{T i}{ }^{2}, k_{T j}{ }^{2}\right) \times \Delta R_{i j}{ }^{2}$
$\left[k_{T i}{ }^{2}=E_{i}{ }^{2}\left(1-\cos \theta_{i j}\right)\right]$ (+ beam treated as non-emitting)
Cambridge/Aachen: $\Delta R_{i j}{ }^{2}$
Anti- $\mathrm{K}_{\mathrm{T}}: \Delta \mathrm{R}_{\mathrm{ij}}{ }^{2} / \max \left(\mathrm{K}_{\mathrm{Ti}}{ }^{2}{ }^{2} \mathrm{~K}_{\mathrm{Tj}}{ }^{2}\right)$
ArClus: $\mathrm{PT}^{2}=\mathrm{S}_{\mathrm{ij}} \mathrm{s}_{\mathrm{jk}} / \mathrm{S}[\mathrm{NB}$: ARCLUS is $3 \rightarrow 2$ instead of $2 \rightarrow 1 \Rightarrow$ can keep all partons on
shell, but more possibilities to try]
\rightarrow Now you have a new set of (n-1) 4-vectors
Iterate until A or B (you choose which):
A: all distance measures larger than something Look at event at: specific resolution
B: you reach a specified number of jets

Why k_{T} (or p_{T} or ΔR)?

Attempt to (approximately) capture universal jet-within-jet-witin-jel... behaviour

Approximate full matrix element
"Eikonal"

$$
\frac{\left|M_{X+1}^{(0)}\left(s_{i 1}, s_{1 k}, s\right)\right|^{2}}{\left|M_{X}^{(0)}(s)\right|^{2}} \sim 4 \pi \alpha_{s} C_{F}\left(\frac{2 s_{i k}}{s_{i 1} s_{1 k}}+\ldots\right)
$$

by Leading-Log limit of QCD \rightarrow universal dominant terms

$$
\begin{aligned}
& \frac{\mathrm{d} s_{i 1} \mathrm{~d} s_{1 k}}{s_{i 1} s_{1 k}} \rightarrow \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \frac{\mathrm{~d} z}{z(1-z)} \rightarrow \frac{\mathrm{d} E_{1}}{\uparrow} \frac{\mathrm{~d} \theta_{i 1}}{\min \left(E_{i}, E_{1}\right)} \frac{\theta_{i 1}}{\theta_{i 1}}\left(E_{1} \ll E_{i}, \theta_{i 1} \ll 1\right), \ldots \\
& \text { Rewritings in soft/collinear limits },
\end{aligned}
$$

$$
\text { "smallest" } k_{T}\left(\text { or } p_{T} \text { or } \theta_{\mathrm{ij}}, \text { or } . . .\right) \rightarrow \text { largest Eikonal }
$$

Types of Algorithms

2. "Cone" lype

Motivated by idea of partons \approx "invariant" directed energy-flow (most of which ends up within a "cone")
Take your 4-vectors
Select a procedure for which "test cones" to draw
Different names for different procedures
Seeded : start from hardest 4-vectors (and possibly combinations
thereof, e.g., CDF midpoint algo) = "seeds"
Unseeded: smoothly scan over entire event, trying everything
Sum momenta inside test cone \rightarrow new test cone direction
Iterate until stable (test cone direction = momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE

Infrared Safety

Definilion

An observable is infrared safe if it is insensitive to
SOFT radiation:
Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:
Splitting an existing particle up into two comoving particles (conserving the total momentum and energy) should not change the value of the observable

IR Safety

Theorem:

For all "IR Safe Observables", hadronization corrections (non-perturbative corrections) are POWER SUPPRESSED

$$
\text { IR Safe Corrections } \propto \frac{Q_{\mathrm{IR}}^{2}}{Q_{\mathrm{UV}}^{2}}
$$

All "non-IR Safe Observables" receive logarithmically divergent PQCD corrections in the IR, which must be canceled by large hadronization corrections \rightarrow more sensitive to UV \rightarrow IR transition

$$
\text { IR Sensitive Corrections } \propto \alpha_{s}^{n} \log ^{m}\left(\frac{Q_{\mathrm{UV}}^{2}}{Q_{\mathrm{IR}}^{2}}\right) \quad, \quad m \leq 2 n
$$

IR Safety

Compare an IR safe and unsafe Jet
May look pretty similar in experimental environment (proof that nature has no trouble canceling all divergencies, no matter what the observable)

So whar's the Erouble?

It's not nice to your theory friends ...
If they use a truncation of the theory (i.e., $P Q C D$)
PQCD badly divergent if IR unsafe, but only power corrections if IR safe
Even if they have a hadronization model
Dependence on hadronization model \rightarrow larger uncertainty

ICPR iteration issue

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give

ICPR iteration issue

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

ICPR iteration issue

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

Consequences of Collinear Unsafety

Collinear Safe

$\alpha_{s}^{n} \times(-\infty)$
Infinities cancel

Collinear Unsafe

Infinities do not cancel

Invalidates perturbation theory

IR Safety \& Real Life

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

	Last meaningful order			Known at
	JetClu, ATLAS cone [IC-SM]	MidPoint [$\mathrm{IC}_{m p}$-SM]	CMS it. cone [IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
$W / Z+1$ jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
$W / Z+2$ jets	none	LO	LO	NLO [MCFM]
$m_{\text {jet }}$ in $2 j+X$	none	none	none	LO
	NB: 50,000,000\$/£/CHF/€ investment in NLO			

Stereo Vision

Use IR Safe algorilhms

To study short-distance physics
These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including

"Cone-like": SiSCone, Anti-kT, ...
"Recombination-like": kT, Cambridge/Aachen, ...

Then use IR Sensilive observables
E.g., number of tracks, identified particles, ...

To explicitly check hadronization and other IR models

$$
\begin{aligned}
& \begin{array}{l}
A t E_{\mathrm{Vis}}=91 \mathrm{GeV} \\
y=2
\end{array} \rightarrow k_{T} \approx 33 \mathrm{GeV} \\
& y=4 \rightarrow k_{T} \approx 12 \mathrm{GeV} \\
& y=6 \rightarrow k_{T} \approx 4.5 \mathrm{GeV} \\
& y=8 \rightarrow k_{T} \approx 1.6 \mathrm{GeV} \\
& y=10 \rightarrow k_{T} \approx 0.6 \mathrm{GeV}
\end{aligned}
$$

Jet Resolution

Parton Level

E.g., $y_{23}=K_{T}{ }^{2} / E_{\text {vis }}{ }^{2}=$ scale where event goes from having 2 to 3 jets

(default PYTHIA 8.135)

$$
\begin{aligned}
A t E_{\mathrm{vis}}=91 \mathrm{GeV} \\
y=2 \rightarrow k_{T} \approx 33 \mathrm{GeV} \\
y=4 \rightarrow k_{T} \approx 12 \mathrm{GeV} \\
y=6 \rightarrow k_{T} \approx 4.5 \mathrm{GeV} \\
y=8 \rightarrow k_{T} \approx 1.6 \mathrm{GeV} \\
y=10 \rightarrow k_{T} \approx 0.6 \mathrm{GeV}
\end{aligned}
$$

Jet Resolution

E.g., $y_{23}=K_{T}{ }^{2} / E_{\text {vis }}{ }^{2}=$ scale where event goes from having 2 to 3 jets

(default PYTHIA 8.135)

Jet Universality

AR LEP: mostly quark jets with loks of c \& b
AE Tevalron/LHC: mostly gluon jets and light-quark jets

Merging Parton Showers and Matrix Elements

Matching

Note: tough subject
Not required to understand everything Don't loose yourselves in the details, Just try to understand the overall reasoning

power: $Q_{\text {max }}^{2}=s ; \quad$ wimpy: $Q_{\text {max }}^{2}=m_{\perp}^{2} ; \quad$ tune A: $Q_{\text {max }}^{2}=4 m_{\perp}^{2}$ $m_{\mathrm{t}}=175 \mathrm{GeV}, \quad m_{\tilde{\mathrm{g}}}=608 \mathrm{GeV}, \quad m_{\tilde{\mathrm{u}}_{L}}=567 \mathrm{GeV}$
(T. Plehn, D. Rainwater, P. Skands)

- A (Complete Idiot's) Solution - Combine

1. $[\mathrm{X}]_{\mathrm{ME}}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering 3. ...

Run generator for X (+ shower)
Run generator for $\mathrm{X}+1$ (+ shower)
Run generator for ... (+ shower)
Combine everything into one sample

Matching

- A (Complete Idiot's) Solution - Combine

1. $[X]_{M E}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\mathrm{ME}}+$ showering
3. ...

- Doesn't work
- $[\mathrm{X}]+$ shower is inclusive
- $[\mathrm{X}+1]+$ shower is also inclusive

Loops and Legs

Born \times Shower
 X+1 @ L0

$$
\begin{array}{llll}
X+1^{(2)} & \ldots \\
X+1^{(1)} & X+2^{(1)} & X+3^{(1)} & \ldots \\
X+1^{(0)} & X+2^{(0)} & X+3^{(0)} & \ldots .
\end{array}
$$

Fixed-Order ME above p_{T} cut \& nothing below

Fixed-Order ME above P_{T} cut \& Shower Approximation below

Loops and Legs

Born \times Shower
 X+1 @ L0 \times Shower

$x^{(2)}$	$X+1^{(2)}$	\ldots		
$x^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+1^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order ME above p_{T} cut \& nothing below
Fixed-Order ME above pT cut \& Shower Approximation below

Loops and Legs

Born \times Shower $+(X+1) \times$ shower

Phase Space Slicing (with "matching scale")

Born \times Shower

+ shower veto above PT_{T}

$x^{(2)}$	$x+1^{(2)}$	\ldots		
$x^{(1)}$	$x+1^{(1)}$	$x+2^{(1)}$	$x+3^{(1)}$	\ldots
Born	$X+1^{(0)}$	$x+2^{(0)}$	$x+3^{(0)}$	\ldots

X+1 @ L0 \times Shower with 1 jet above P_{\top}

$$
X+1^{(2)} \quad \ldots
$$

$$
x+1^{(1)} \quad x+2^{(1)} \quad x+3^{(1)}
$$

$$
X+1^{(0)} \quad X+2^{(0)} \quad X+3^{(0)}
$$

Fixed-Order ME above p_{T} cut \& nothing below

Fixed-Order ME above P_{T} cut \& Shower Approximation below

Phase Space Slicing (with "matching scale")

Multi-Leg Slicing

(a.k.a. CKKW or MLM matching)

Keep going

Veto all shower emissions above "matching scale" (except for the highest-multiplicity matrix element)

\rightarrow Multileg Treelevel matching

Vetoed Parton Showers

(used in Phase Space Slicing, a.k.a. CKKW or MLM matching)

Common (at ME level):

1. Generate one ME sample for each of $\sigma_{n}\left(p_{\text {Tcut }}\right)$ (using large, fixed $\alpha_{s_{0}}$)
2.Use a jet algorithm (e.g., k_{T}) to determine an approximate shower history for each ME event
3.Construct the would-be shower α_{s} factor and reweight

$$
w_{n}=\operatorname{Prod}\left[\alpha_{s}\left(k_{T i}\right)\right] / \alpha_{s 0^{n}}
$$

\rightarrow "Renormalization-improved" ME weights

CKKW and CKKW-L

1. Apply Sudakov $\Delta\left(t_{\text {start }}, t_{\text {end }}\right)$ for each reconstructed internal line (NLL for CCKW, trial-shower for CKKW-L)
2.Accept/Reject: $w_{n} \times=\operatorname{Prod}\left[\Delta_{i}\right]$
3.Do parton shower, vetoing any emissions above cutoff

MLM

1. Do normal parton showers
2.Cluster showered event (cone)
3.Match ME partons to jets
4.If \{all partons matched \&\& $\left.\mathrm{n}_{\text {partons }}==\mathrm{n}_{\text {jets }}\right\}$ Accept $:$ Reject;

Multi-Jet Samples

MC@NLO

"Additive" Matching

Born \times Shower

NLO

MC@NLO

"Additive" Matching

Born \times Shower

$X^{(2)}$	$X+1^{(2)}$	\ldots	
$X^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$
\ldots			
Born	$X+1^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$
\ldots			

\square Fixed-Order Matrix Element

Shower Approximation

NLO - Shower

Expand shower approximation to NLO analytically, then subtract:
\square Fixed-Order ME minus Shower Approximation (NOTE: can be < O!)

MC@NLO

"Additive" Matching

Add

Born + shower-subtracted $O\left(\alpha_{s}\right)$ matrix elements

\rightarrow NLO + parton shower
(however, the "correction events" can have w<0)

MC@NLO

"Additive" Matching

Born \times Shower

$X^{(2)}$	$X+1^{(2)}$	\ldots	
$X^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$
\ldots			
Born	$X+1^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$
\ldots			

\square Fixed-Order Matrix Element

Shower Approximation

NLO - Shower

Expand shower approximation to NLO analytically, then subtract:
\square Fixed-Order ME minus Shower Approximation (NOTE: can be < O!)

PYTHIA / POWHEG "Merging"

Born \times First-Order Corrected Shower

$X^{(2)}$	$X+1^{(2)}$	\ldots	
$x^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$
\ldots			
Born	$X+1^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$
\ldots			

$X^{(2)}$	$X+1^{(2)}$	\ldots		
$X^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+1^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Use exact (process-dependent) split-Fixed-Order Matrix Element ting function for first splitting
\square Shower Approximation \square Fixed-Order ME minus Shower Approximation

NLO Matching in 1 Slide

- First Order Shower expansion

$$
x+1^{(0)}=x+\left(\frac{x+1^{(0)}}{\text { Born }}+\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\right) \text { Born }
$$

$$
=-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2}
$$

Finite terms cancel in 3-parton O

- 2-parton virtual correction (same example)

$$
\begin{aligned}
x^{(1)} & =\frac{X^{(1)}}{(1)}+\text { Born } \int_{0}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}}\lfloor\mathrm{~L} \\
& =\frac{\alpha_{s} \hat{C}_{F}}{2 \pi}\left(2 I_{q \bar{q}}^{(1)}(\epsilon, s)-4-2 I_{q \bar{q}}^{(1)}(\epsilon, s)+\frac{19+\alpha+\frac{2}{3} \beta}{4}\right) \frac{\mathrm{d} \Phi_{3}}{\mathrm{~d} \Phi_{2}}{\mathrm{X}+1^{(0)}}^{\text {Born }}
\end{aligned}
$$

$$
=\frac{\alpha_{s}}{\pi}\left(1+\frac{1}{3}\left(\alpha+\frac{2}{3} \beta\right)\right) \text { Born } \quad \square
$$

Finite terms cancel in 2parton O (normalization)

NLO Matching in 1 Slide

- First Order Shower expansion

PS

$$
\int \mathrm{d} \Phi_{2}\left|M_{2}^{(0)}\right|^{2} \int_{Q_{\mathrm{had}}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} A_{q \bar{q}}(\ldots) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right)
$$

Unitarity of shower $\rightarrow 3$-parton real $=-2$-parton "virtual"

- 3-parton real correction ($\left.A_{3}=\left|M_{3}\right|^{2}\right\rangle\left. M_{2}\right|^{2}+$ finite terms; α, β)

$$
w_{3}^{(R)}=\left|M_{3}^{(0)}\right|^{2}-\left(A_{3}^{0}(\ldots)+\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\right)\left|M_{2}^{(0)}\right|^{2}
$$

$$
=-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2}
$$

Finite terms cancel in 3-parton O

- 2-parton virtual correction (same example)

$$
\begin{aligned}
w_{2}^{(V)} & =2 \operatorname{Re}\left[M_{2}^{(1)} M_{2}^{(0) *}\right]+\left|M_{2}^{(0)}\right|^{2} \int_{0}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} A_{q \bar{q}}(\ldots)+\int_{0}^{Q_{\mathrm{had}}^{2}} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} w_{3}^{(R)} \\
& =\frac{\alpha_{s} \hat{C}_{F}}{2 \pi}\left(2 I_{q \bar{q}}^{(1)}(\epsilon, s)-4-2 I_{q \bar{q}}^{(1)}(\epsilon, s)+\frac{19+\alpha+\frac{2}{3} \beta}{4}\right)\left|M_{2}^{(0)}\right|^{2}
\end{aligned}
$$

$$
=\frac{\alpha_{s}}{\pi}\left(1+\frac{1}{3}\left(\alpha+\frac{2}{3} \beta\right)\right)\left|M_{2}^{(0)}\right|^{2}
$$

Finite terms cancel in 2parton O (normalization)

LL Showers are correct

When all emissions are strongly ordered (= dominant QCD structures)
But they are unpredictive for hard jets
Often too soft (but not guaranteed! Can be too hard!)
Mabrix elements are correct
When all jets are hard and no hierarchies
(single-scale problem)
(= small corner of phase space, but an important one!)
But they are unpredictive for strongly ordered emissions
ME-PS makching \rightarrow study both regions with ONE sample

Approaches on the Market

Ariadne
CKKW-L + Lund-dipole showers
MC@NLO
NLO with subtraction, 10% w<0

+ Herwig showers
POWHEG
NLO with merging; 0\% w<0
+ "truncated" showers
(Vincia+Py8)
NLO + multileg a la GeeKS
+ dipole-antenna showers

Recommended Reading

Recommended Reading

RTFM : Pythia 6.4 physics and manual
Contains useful pheno-oriented introductions to many topics, ≈ 600 p Sjöstrand, Mrenna, PS; hep-ph/0603175

Les Houches Guidebook to MC Generators

Sections on PDFs, matching, fixed order, etc (+ MCnet update ≈ 2011)
M. Dobbs et al., hep-ph/0403045

```
Les Houches Accords for generators
Les Houches conventions + LHEF file structure
hep-ph/0109068 (org LHA conventions) + hep-ph/0609017 (LHEF) + hep-ph/0712.3311 (BSM-LHEF)
```


Papers on Multiple Parton Interactions

Sjöstrand, van Zijl; Phys.Rev.D36(1987)2019 (main ideas + org MPI model + pheno) Sjöstrand, PS; hep-ph/0408302 (interleaved model) \& hep-ph/0402078 (beam remnants)

Butterworth, Forshaw, Seymour hep-ph/9601371 (JIMMY), + see hepforge

Additional Slides

PDF DGLAP : Details

MeN: $\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q}$,
More properly, it's a gain-loss equation (same equation, rewritten):

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} d z p_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{0}^{1} d z p_{q q}(z) q\left(x, \mu^{2}\right)
$$

$$
p_{q q} \text { is real } q \leftarrow q \text { splitting kernel: } p_{q q}(z)=C_{F} \frac{1+z^{2}}{1-z}
$$

First term: some partons flow from higher $y=x / z$ to x (POSITIVE) Second term: some partons at x flow to lower $y=z x$ (NEGATIVE)

PDF DGLAP : Details

Awkward to write real and virtual parts separately. Use more compact notation:

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q}, \quad P_{q q}=C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+}
$$

This involves the plus prescription:

$$
\begin{aligned}
& \int_{0}^{1} d z[g(z)]_{+} f(z)=\int_{0}^{1} d z g(z) f(z)-\int_{0}^{1} d z g(z) f(1) \\
& z=1 \text { divergences of } g(z) \text { cancelled if } f(z) \text { sufficiently smooth at } z=1
\end{aligned}
$$

