



### High average power couplers SPL possible designs

Eric Montesinos CERN / BE-RF-SR 3<sup>rd</sup> SPL Coordination Meeting 11-13 November 2009

1





### SPL requirements

| f <sub>o</sub>                    | 704.4 MHz                                                                     |
|-----------------------------------|-------------------------------------------------------------------------------|
| Low Power SPL                     | 2.5 kW average<br>600 kW pulsed<br>0.4 + 1.2 + 0.4 = 2.0 ms<br>2 Hz (500 ms)  |
| High Power SPL                    | 100 kW average<br>1000 kW pulsed<br>0.4 + 1.2 + 0.4 = 2.0 ms<br>50 Hz (20 ms) |
| Cavity design gradient            | 19-25 MV/m                                                                    |
| Q <sub>ext</sub> of input coupler | 1.10 <sup>6</sup> for LP-SPL and HP-SPL                                       |
| Input line Ø                      | $100 / 43.5 \mathrm{mm} = 50 \Omega$                                          |
| Waveguides                        | WR 1150                                                                       |

Source : https://twiki.cern.ch/twiki/bin/view/SPL/SplWeb



# **Comparison basis**

- Engineering points for super conducting power couplers:
  - RF power capability
  - Low heat load

sLHC

- Tuning capability (fixed coupling, adjustable coupling)
- Contamination during beam vacuum part assembly
- Easy installation
- Integration with the cryomodule
- Conditioning time
- Easy operation
- Cost







# **Coaxial Disk windows**

| Coupler   | Frequency<br>[MHz] | Average Power<br>[kW] | Peak power<br>[kW] | # in operation or constructed |
|-----------|--------------------|-----------------------|--------------------|-------------------------------|
| APT       | 700                | 1000                  | 1000               | 2                             |
| SPS       | 200                | 550                   | 800                | 16                            |
| КЕКВ      | 509                | 300                   | 1420               | 8                             |
| CEA-HIPPI | 704                | 120                   | 1200               | 2                             |
| IHEP      | 500                | 150                   | 270                | 2                             |
| JPARK     | 972                | 30                    | 2200               | 23                            |
| SNS       | 805                | 78                    | 2000               | 93                            |







Eric Montesinos CERN / BE-RF-SR





# Waveguide windows

| Coupler       | Frequency<br>[MHz] | Average Power<br>[kW] | Peak power<br>[kW] | # in operation or constructed |
|---------------|--------------------|-----------------------|--------------------|-------------------------------|
| SPS           | 801                | 225                   | 225 (more ?)       | 8                             |
| Cornell       | 500                | 350                   | 350                | 4                             |
| FNAL / TTF II | 1300               | 4.5                   | 1000               | 32                            |











# One cylindrical window

| Coupler         | Frequency<br>[MHz] | Average Power<br>[kW]          | Peak power<br>[kW] | # in operation or<br>constructed |
|-----------------|--------------------|--------------------------------|--------------------|----------------------------------|
| ESRF / Soleil   | 352                | 550 sw cw                      | Under construction | 64                               |
| LHC             | 400                | 550 sw cw,<br>(i.e 2200 tw cw) | i.e. 2200 tw cw    | 16                               |
| LEP             | 352                | 550 tw cw                      | 565 tw cw          | 252                              |
| SPS (1976-2000) | 200                | 375                            | 500                | 16                               |











# Two cylindrical windows

| Coupler           | Frequency<br>[MHz] | Average Power<br>[kW] | Peak power<br>[kW] | # in operation or constructed |
|-------------------|--------------------|-----------------------|--------------------|-------------------------------|
| TTF family - XFEL | 1300               | 4.5                   | 1100               | 16 (+ 1064)                   |
| Cornell ERL       | 1300               | 75                    | 75                 | 2                             |



CERN / BE-RF-SR

Beams department RF group



### CEA Saclay - Coaxial disk window Baseline project

- Design based on a coaxial disk ceramic window as in operation at KEKB and SNS, modified for 704 MHz
- Advantages

sLHC

- High power capability, *tested* :
  - Up to 1 MW with 2 ms / 50 Hz on warm test cavity
  - Tests ongoing on cold cavity
- Possible DC HV biasing
- Commercial window
- Difficulties
  - Window with water cooled antenna, needs an accurate mounting
  - No air cooling to relax mounting (too small pipes)
- Modification of double walled tube for cryomodule compatibility







### CERN – TWC 200MHz based Coaxial disk window

- Design based on a coaxial disk ceramic window as in operation on the CERN SPS TWC 200 MHz
- Advantages
  - High power capability

sLHC

- Very easy to cool down the antenna (air cooling)
- Plain copper body water cooled
- Upper part of the antenna with sliding contacts, easy mounting
- Possible DC HV biasing
- Difficulties
  - Ceramic is part of the matching system
  - Position of the ceramic for cryomodule assembly



Eric Montesinos CERN / BE-RF-SR





### CERN - LHC based One cylindrical window

- Design based on the same cylindrical window as used with LHC couplers
- A new version is under construction for ESRF and Soleil (352 MHz, warm cavity)
- Advantages
  - High power capability, LHC proven
  - Very easy to cool down the antenna (air cooling)
  - Upper part of the antenna with sliding contacts
  - Possible DC HV biasing
  - Ceramic air cooled with its own air cooling
  - Plain copper body water cooled
  - Easy to assemble

sLHC

- Less expensive version of coupler
- Difficulties
  - Ceramic is part of the matching system
  - Position of the ceramic for cryomodule assembly





#### Eric Montesinos CERN / BE-RF-SR





### CERN – TWC 800MHz based Waveguide window

- Design based on a waveguide disk window as in operation on the CERN SPS TWC 800 MHz couplers
- Advantages
  - Very simple antenna system
  - Mechanically very robust
- Difficulties
  - Not known brazing process at CERN
  - Difficult DC HV biasing
  - Larger vacuum volume to pump
  - Power limit

sLHC

• Very difficult position of the ceramic for cryomodule assembly









# Fixed versus Adjustable coupler



#### Disk window - fixed coupler

Eric Montesinos CERN / BE-RF-SR • An adjustable coupler is not a variable coupler (only few mm of fine coarse)

- However, in addition to the already complex line :
  - Moving system not stressing the ceramic
  - Below, more EB welding
  - Alignment system to keep the bottom part of the antenna at the right place under the below

#### This will :

- increase the complexity
- Increase the number of mechanical operations
- Increase the risk of pollution of the coupler
- Increase the risk of vacuum leak
- Subsequently increase the total price

Disk window - adjustable coupler





# Proposed design



- For mechanical reasons:
  - Better to have the coupler mounted vertically, above or below the cavity
  - Less stress to the antenna
- Due to the high average power:
  - Only one ceramic, difficult to cool down a beam vacuum / coupler vacuum ceramic
  - Connected with a double walled tube to ensure the thermal transition





### Interfaces



- Interfaces will have to be decided as soon as possible :
  - 1/ Cavity flange, lower part of the double walled tube, the fix point of the power coupler
  - 2/ Cryostat flange, upper part of the double walled tube (cavity isolation vacuum)
  - 3/ Total height of the coupler for cryomodule integration
  - 4/ Waveguide flange, will impact on the wave guide distribution, and the needed supporting tools of the coupler





### **Couplers comparison**









| Parameter                        | CAE Saclay<br>704 MHz          | SPS 200 MHz<br>based         | LHC 400 MHz<br>based         | SPS 800 MHz<br>based |
|----------------------------------|--------------------------------|------------------------------|------------------------------|----------------------|
| Ceramic                          | Coaxial Disk<br>(water cooled) | Coaxial Disk<br>(air cooled) | One cylindrical plain copper | Waveguide Disk       |
| Max Peak Power                   | 1200                           | 1200                         | 2200                         | 250 ?                |
| Max Average Power                | 120                            | 550                          | 550                          | 250                  |
| Easy integration with cryomodule | yes                            | yes - no                     | difficult                    | very difficult       |
| Easy DC-HV biasing               | yes                            | yes                          | yes                          | no                   |
| Adjustable                       | difficult                      | yes                          | yes                          | yes                  |
| Exists and tested !              | YES                            | no                           | no                           | no                   |





### Cost estimate (fixed coupler only)









| All in kCHF              | CAE Saclay<br>704 MHz | SPS 200 MHz<br>Based | LHC 400 MHz<br>Based | SPS 800 MHz<br>Based |
|--------------------------|-----------------------|----------------------|----------------------|----------------------|
| Window only              | 50                    | 20                   | 10                   | 15                   |
| Design                   | 10                    | 10                   | 10                   | 10                   |
| Coupler (unit price)     | 90                    | 70                   | 60                   | 65                   |
|                          |                       |                      |                      |                      |
| 4 Warm test cavities     | 150                   |                      |                      |                      |
|                          |                       |                      |                      |                      |
| Total 8<br>(+2 ceramics) | 980                   | 800                  | 720                  | 720                  |





# Draft time table

Coupler design review March 2010



Eric Montesinos CERN / BE-RF-SR





# Conclusion

- One window coupler (for high average power)
- Vertical position (preferably above)
- Double walled tube
- Design(s) ended march 2010 :
  - <u>Fixed</u> or adjustable coupler
  - Interfaces with cryomodule
  - Chosen design(s)

- Would help to define the best solution for large series of 250 HP-SPL couplers enabling us to define:
  - Power capability
  - Easy construction and assembly for large series
  - Integration with cryomodule and waveguide lines
  - Reliability
  - True series cost





# Thank you for your attention

#### **Coupler review**

http://www.jlab.org/div\_dept/admin/publications/papers/02/ACT02-12.pdf

http://www.lns.cornell.edu/public/SRF/2002/SRF021105-09/SRF021105-09.pdf

http://accelconf.web.cern.ch/AccelConf/eo2/TALKS/TUXGBoo2.pdf

sLHC

http://hal.archives-ouvertes.fr/docs/oo/18/93/23/PDF/in2p3-oo189323.pdf

http://srf2003.desy.de/talks/Rusnak/Rusnak.pdf

 $http://www.astec.ac.uk/ERLo_7/Presentations/Wednesday\_Presentations/WG_3/Wednesday/BEARD\_ERL\_WORKSHOP\_COUPLERS\_TALK\_v_3.pdf$ 

http://accelconf.web.cern.ch/accelconf/srf2007/PAPERS/WE305.pdf

http://srf.desy.de/fap/paper/ThP34.pdf

http://hal.archives-ouvertes.fr/docs/00/07/74/45/PDF/LALRT06-03.pdf

http://indico.cern.ch/getFile.py/access?contribId=34&sessionId=75&resId=2&materiaIId=slides&confId=44821

#### **Coaxial Disk windows**

| Los Alamos / APT | http://accelconf.web.cern.ch/accelconf/loo/papers/THD16.pdf<br>http://www-linac.kek.jp/~suwada/ERLSC/F/MOP133.pdf                                                                                                                                                                                                                                                               |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КЕКВ             | http://accelconf.web.cern.ch/accelconf/eoo/PAPERS/THP1An.pdf<br>http://srf2009.bessy.de/papers/tupp0022.pdf<br>http://accelconf.web.cern.ch/AccelConf/srf2007/PAPERS/TUP60.pdf                                                                                                                                                                                                  |
| CEA / SPL        | http://accelconf.web.cern.ch/AccelConf/eoo/PAPERS/THP5Bo2.pdf<br>http://trshare.triumf.ca/~linaco8proc/Proceedings/papers/thpoo6.pdf                                                                                                                                                                                                                                            |
| SNS              | http://www.ornl.gov/-webworks/cppr/y2001/pres/11126.pdf<br>http://epaper.kek.jp/lo2/PAPERS/TH455.PDF<br>http://accelconf.web.cern.ch/AccelConf/eo2/PAPERS/THPDO016.pdf<br>http://tdserver1.fnal.gov/8gevlinacpapers/RF_Couplers/SNS_Coupler_Prototype_AC<br>To1-14.pdf<br>http://tdserver1.fnal.gov/8gevlinacpapers/RF_Couplers/SNS_RF_Coupler_Processing<br>Stand_ACT01-08.pdf |

#### Two cylindrical windows

| DESY / TTF family | http://hal.archives-ouvertes.fr/docs/oo/07/74/31/PDF/LALRT0602.pdf<br>http://tdserveri.fnal.gov/8gevlinacpapers/Cavities/TESLA%20Cavity/RF%20Coupler/<br>DKostin_Coupler%20DevelopmentPT00i.pdf<br>http://ilcagenda.linearcollider.org/getFile.py/access?contribId=sit8&resId=o&materi<br>alId=o&confid=desyao52<br>http://www.cpii.com/docs/related/21/Power%20Couplers%20for%20the%20ILC.pdf |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERL               | http://www-linac.kek.jp/~suwada/ERLSC/F/Input_coupler_for_ERL_injector.pdf<br>http://www.springerlink.com/content/14138622ha5138n1/<br>http://accelconf.web.cern.ch/AccelConf/srf2007/PAPERS/WEP26.pdf                                                                                                                                                                                         |

#### Waveguide windows

| Rossendorf / ELBE | http://accelconf.web.cern.ch/AccelConf/srf2007/PAPERS/WEP81.pdf |
|-------------------|-----------------------------------------------------------------|
| Cornell / CERS    | http://laacg1.lanl.gov/rfsc99/rfsc99_web/THA/thaoo6.pdf         |

#### **One cylindrical windows**

| CERN / LEP | http://epaper.kek.jp/p95/ARTICLES/TPP/TPP12.PDF<br>http://accelconf.web.cern.ch/Accelconf/e96/PAPERS/WEPL/WEP009L.PDF             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CERN / LHC | http://laacgi.lanl.gov/rfsc99/rfsc99_web/THA/thaoo8.pdf<br>http://cdsweb.cern.ch/record/io80548/files/lhc-project-report-io54.pdf |