

3rd SPL Collaboration Meeting at CERN on November 11-13, 2009

Higher Order Modes In The SPL, Transverse And Longitudinal Effects

Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland

11.11.09

HOM Bunch Tracking Simulation Code
Simulation input parameters
Simulation results

Chopping
Conclusions & Outlook

3rd SPL Collaboration Meeting

2

11.11.09

CERN

Basic LINAC Simulation Model

- Drift kick model with **exact** cavity spacing (not transverse)
- E₀T(β) via field integration (**only sync. particle**)
- Phase and field controlled individually for each cavity
- Transfer matrix between cavities (transverse) using phase advance per period (no magnets modeled)
- Longitudinal and transverse plane are independent

Bunch (point charge)/particle tracking without space charge effects

mschuh@cern.ch

11,11,09

3rd SPL Collaboration Meeting 3

Basic HOM Model

- One HOM per cavity (monopole or dipole)
- Gaussian or Uniform HOM frequency distribution $(\sigma = 1 MHz)$ with no change over time
- $R/Q(\beta)$ applied in each cavity according to beam β
- Global Qex
- ➢ Load HOM via bunch tracking (Bunch ⇔ HOM interaction)

3rd SPL Collaboration Meeting

4

11.11.09

Beam Input Parameters

Basic beam settings used in all simulations:

Parameter	Mean	Variance	Simulation
Bunch period [ns]	$1/f_b \approx 3$	0.00315	long
Pulse length [ms]	1.0	0	both
Period length [ms]	20	0	both
Beam current [mA]	40400	3%	both
WInput [MeV]	160	0.078	long
Tr. position [mm]	0	0.3	trans
Tr. momentum [mrad]	0	0.3	trans

^{3rd} SPL Collaboration Meeting

11.11.09

HOM Parameter

	Longitudinal		Transversal	
Section Parameter	Medium ß	High β	Medium β	High β
fном [MHz]	1783±1	1330±1	1015±1	915 ± 1
R/Q(β) [Ω*] (avg)	12	114	60	48

* linac def.

Compare phase space (ɛ) of one pulse (350.000 bunches) with (loaded HOM) and without HOM interaction at the exit of the linac.

6

Longitudinal - General Case

Longitudinal Bunch Center Emittance Growth Rate

7

3rd SPL Collaboration Meeting

CÊRN

11.11.09

Transversal - General Case

Transversal Bunch Center Emittance Growth Rate

3rd SPL Collaboration Meeting

CERN

8

11.11.09

Chopping Modes

New machine lines (created by chopping):

•
$$N_{ci}/N_{cb}$$
: $f_{mcn} = n \frac{1}{T_{cb}} = n \frac{f_b}{N_{cb}}$; $n \in \mathbb{N}$

• x/8: $f_{mc1} = 44.025 MHz$

CERN

- y/80: $f_{mc1} = 4.4025MHz$
- z/800: $f_{mc1} = 0.44025MHz$

N.B.: Charge per pulse stays const. → charge per bunch increases

3rd SPL Collaboration Meeting

9

11.11.09 mschuh@cern.ch

Effect Of Chopping Analytically (Longitudinal)

Voltage induced by one pulse:

$$V_{Pulse} = V_b \frac{1 - \exp\left(-\frac{T_p}{T_d} + i\omega_n T_p\right)}{1 - \exp\left(-\frac{T_b}{T_d} + i\omega_n T_b\right)} \qquad T_d = \frac{2Q_{ex}}{\omega_n}$$

• Voltage induced by one pulse with substructure:

$$V_{Pulse} = V_b \frac{1 - \exp\left(-\frac{T_p}{T_d} + i\omega_n T_p\right)}{1 - \exp\left(-\frac{T_b}{T_d} + i\omega_n T_b\right)} \cdot \frac{1 - \exp\left(-\frac{T_{ci}}{T_d} + i\omega_n T_{ci}\right)}{1 - \exp\left(-\frac{T_{cb}}{T_d} + i\omega_n T_{cb}\right)}$$

Further details: S. Kim et al., Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

3rd SPL Collaboration Meeting 10

11.11.09

5/8 Chopping

11

3rd SPL Collaboration Meeting

CERN

11.11.09

5/8 Chopping

CERN

12

11.11.09

5/8 Chopping

3rd SPL Collaboration Meeting

CERN

13

11.11.09

Emittance growth - chopping

Longitudinal Bunch Center Emittance Growth Rate

14

3rd SPL Collaboration Meeting

ERN

11.11.09

Emittance growth - chopping

Longitudinal Bunch Center Emittance Growth Rate

3rd SPL Collaboration Meeting

ERN

15

11.11.09

Emittance growth - chopping

Longitudinal Bunch Center Emittance Growth Rate

3rd SPL Collaboration Meeting

ERN

11.11.09

¹⁶

Effect Of Different Parameters

Parameter	LONG	TRANS
Frequency Spread		
Charge Scatter	*	+
Input Phase Space	+	+
I·R/Q		*
Machine Lines	📕 (no op.)	
Chopping	(critical)	*
Klystron Errors	➡ (minor growth)	-
Cav. Alignment	-	(minor growth)
Pulse Length	→ (Q _{ex} <10 ⁶)	→(Q _{ex} <10 ⁶)

3rd SPL Collaboration Meeting 17

CERN

11.11.09 mschuh@cern.ch

Conclusions

- Tools developed to simulate influence of HOMs
- Simulations show HOM damping seeming to be necessary in order to provide a high brilliance beam!
- Chopping is a critical issue in the longitudinal plane

18

• The limit of Q_{ex} based on the presented results: Q_{ex} <10⁷ (in case of chopping Q_{ex} <10⁵)

CERN

11.11.09

- > Open beam dynamic issues:
 - Halo particles losses (activation issue)
 - Interaction of several modes in one cavity
 - e⁻ in the SPL (used as recirculating e⁻ linac)
- > Can steel bellows provide enough damping?

Thank You!

Questions?

ERN

3rd SPL Collaboration Meeting

20

11.11.09 mschuh@cern.ch

Emittance Growth – 5/8 Chopping

3rd SPL Collaboration Meeting

CERN

21

11.11.09

 $f_{HOM} = 1321 \pm 1 MHz$, $I_b = 0.4A$, $Q_{ex} = 10^7$ $\beta = 0.65$ cavities $\beta = 1.0$ cavities

22

3rd SPL Collaboration Meeting

ERN

11.11.09

Tr. Emittance growth – chopping

3rd SPL Collaboration Meeting

CÊRN

11.11.09

$R/Q(\beta)$ maps

11.11.09

3rd SPL Collaboration Meeting

ERN

Statistic: 1000 linacs

Influence of input beam and cavity to cavity frequency distribution

Long. charge scatter

3rd SPL Collaboration Meeting

CERN

26

11.11.09

Long. Machine Line

Emittance growth rate longitudinal WS parameter, R/Q(Beta), ML

3rd SPL Collaboration Meeting

CERN

11.11.09

²⁷

Long. Klystron

Emittance growth rate longitudinal WS parameter, R/Q(Beta), Klystron

3rd SPL Collaboration Meeting

CERN

28

11.11.09 mschuh@cern.ch

Long. Pulse length

Emittance growth rate longitudinal WS parameter, R/Q(Beta), 2ms

3rd SPL Collaboration Meeting

CERN

29

11.11.09

Long. Chopping

3rd SPL Collaboration Meeting

CERN

30

11.11.09

TR. charge scatter

Emittance growth rate transversal WS parameter, R/Q(Beta) , charge scatter

3rd SPL Collaboration Meeting

CERN

31

11.11.09

Tr. Frequency scatter

3rd SPL Collaboration Meeting

CERN

32

11.11.09

Tr. Machine line

3rd SPL Collaboration Meeting

CERN

33

11.11.09

Tr. Max mode per cavity

CERN

Tr. Pulse length

Emittance growth rate transversal WS parameter, R/Q(Beta), 2ms

35

3rd SPL Collaboration Meeting

CERN

11.11.09

TR. alignment

3rd SPL Collaboration Meeting

CERN

36

11.11.09

Beam HOM Interaction

Monopole modes:
Each bunch sees half of its self-induced voltage Vb:

• Energy error caused by HOM:

CERN

 $dU_H = e\left(\Re(V_H)\cos(\omega_H dt) - \Im(V_H)\sin(\omega_H dt)\right) - \frac{1}{2}V_b$ • Iteration over linac:

37

 $dE^{(n+1)} = dE^{(n)} + dU_{RF} + dU_H$ $dt^{(n+1)} = dt^{(n)} + (dt/dE)_E \cdot dE$

3rd SPL Collaboration Meeting

11.11.09 mschuh@cern.ch

Longitudinal Beam Dynamic

• Particle velocity: $\beta < 1$

CERN

• Energy error causes arrival time / phase error:

$$dt = -\frac{L}{c \cdot m_0 c^2 \cdot (\gamma^2 - 1)^{3/2}} dE$$

• Phase error causes a different energy gain in next cavity:

$$dU_{RF} = eV_{RF}^* \cdot \cos(\phi_s + \omega_{RF}dt) - \Delta U$$

3rd SPL Collaboration Meeting 38

11.11.09

Transverse Beam Dynamic

- Transfer Matrix between cavities
- Bunch induce an imaginary voltage:

$$\Delta V_{\perp} = ixq rac{\omega^2}{c} (R/Q)_{\perp}$$

HOM kicks bunch/particle - momentum change:

$$\Delta x' = \frac{e \Re(V_{\perp})}{c \cdot p_{\parallel}}$$

CERN

11.11.09

Observed Dipole Kick

3rd SPL Collaboration Meeting

ERN

40

11.11.09

HOM voltage distribution (const R/Q)

41

3rd SPL Collaboration Meeting

ERN

11.11.09

HOM voltage distribution (R/Q_{\perp}(β))

Dipole mode – 1000 simulations: $I_b = 0.4A$, $Q_{ex} = 10^7$

42

CERN

de l'And

11.11.09

Cavity modeling

- 2d Superfish model3d HFSS model
 - half cavity length
 - quarter rotation
 - boundary conditions

3rd SPL Collaboration Meeting

43

11.11.09

Cavity geometry

• Cavitiy shapes at 704.4MHz (symmetrical):

3rd SPL Collaboration Meeting

CÊRN

11.11.09

Monopole Modes

β	Mode	f [MHz]	HFSS (R/Q)† [Ω]	Superfish (R/Q)† [Ω]
0.65	TM ₀₁₀ 4/5π	703.7	1	1
0.65	ΤΜ010 π	704.4	318	330
0.65	ΤΜ011 3/5π	1765	3	4
0.65	TM ₀₁₀ 4/5π	1774	4	3
0.65	TM01 cuttoff	2550		
1	TM ₀₁₀ π	704.4	525	562
1	TM ₀₁₁ 4/5π	1328	37	36
1	TM ₀₁₁ π	1332	137	135
1	TM ₀₂₁	2090	25	21
1	TM ₀₁ cuttoff	1639		
⁺ linac definition				

45

3rd SPL Collaboration Meeting

CERN

11.11.09

CÉRN

Dipole Modes

β	Mode	f [MHz]	HFSS (R/Q)† [Ω]
0.65	TM ₁₁₀ 2/5π	1020	19
0.65	TM ₁₁₀ 3/5π	1027	28
0.65	TM ₁₁₀ 4/5π	1033	6
0.65	ΤΕ111 1/5π	1270	13
0.65	TE ₁₁ cuttoff	1952	
1	ΤΕ111 3/5π	915.1	18
1	TE ₁₁₁ 4/5π	939.8	33
1	TE ₁₁₁ π	966.4	13
1	TM ₁₁₀ 3/5π	1014	19
1	TE ₁₁ cuttoff	1255	

⁺linac definition

3rd SPL Collaboration Meeting

1.521

46

11.11.09