

SPL cavity design by CEA-Saclay

Juliette Plouin, Stephane Chel, Guillaume Devanz CEA-Saclay, France

> 3rd SPL Collaboration Meeting 11-13 November, CERN

SPL cavity design by CEA-Saclay - Juliette Plouin

$\frac{1}{\text{Saclay}}$ Requirements of the $\beta = 1$ SPL cavities

352.2 MHz 704.4 MHz

RF frequency	704.4 MHz
Gradient	25 MV/m
Number of cells/cavity	5
Average pulsed current	40 mA
r/Q	570 Ω
Q ₀	10 ¹⁰
Synchronous phase	-15°

CDR of the SPL II, 2006

Geometry of the Saclay design

saclay The inner cells have been directly scaled from the Tesla design

TVEVSVLVA

		inner ½	outer ½ cells	outer ½ cells
1000		cells	FPC side	tuner side
1300	External radius (REQ)	190.786	190.786	190.786
MH ₇	Iris radius (RI)	65	64.6	70
141112	Length (AL)	103.07	106.47	103.07
	Equator ellipse a (A1)	74.45	77.5	74.45
	Equator ellipse b (B1)	83.27	77.5	76.89
704.4	Iris ellipse a (A2)	18.5	22.1	18.5
	Iris ellipse b (B2)	24.9	35.1	24.9

The outer ½ cells have been adapted to match 704.4 MHz with the SPL draft tubes, and to optimize the RF parameters

- The drift tube at the coupler side has 140 mm diameter (coupler has 100 mm diameter)
- The drift tube at the tuner side has 130 mm diameter
- Both tubes end with 80 mm diameter

Overall length of the cavity : 1393 mm, provided that we use NbTi flanges of the TTF-Tesla type.

10/11/2009

SPL cavity design by CEA-Saclay – Juliette Plouin

saclay

CORF parameters of the Saclay $\beta = 1$ cavity

	SPL	Tesla ^(a)	HIPPI
Number of gaps (Ngap)	5	9	5
Frequency [MHz]	704.4	1300	704.4
Beta	1	1	0.47
Bpk/Eacc [mT/(MV/m)]	4.20	4.26	5.59
Epk/Eacc	1.99	2	3.36
G [Ohm]	270	270	161
Cell to cell coupling	1.92 %	1.87 %	1.35 %
r/Q [Ohms]	566	1036	173
Beam diameter aperture [mm]	129.2	70	80
Lacc = Ngap. β . $\lambda/2$ [m]	1.0647	1.038	0.5
Maximum energy gain @ Bpk = 100 mT (MeV)	25	24	9
Operating Temperature (O.T.)	2 К	2 К	2 K
$R_{BCS} @ O.T.$ (theoretical \blacklozenge) (n Ω)	3.2	11	3.2
Q ₀ @ O.T. for R _{BCS}	8.4*10 ¹⁰	2.5*10 ¹⁰	5*10 ¹⁰

^(a): Tesla TDR, part II, 2001

$$R_{BCS} = 2.10^{-4} \frac{1}{T} \left(\frac{f}{1.5}\right)^2 e^{-17.67/T}$$

Field pattern at 704 MHz (HFSS) SPL cavity design by CEA-Saclay – Juliette Plouin

CECI Fundamental Power Coupler external Q

saclay

The target value for the external Q is $Q_{ext} = 1.2*10^6$

 $Q_{ext} = \frac{E_{acc} \cdot L_{acc}}{2 \cdot \frac{r}{Q} \cdot I_0 \cdot \cos(\varphi_s)} \begin{cases} I_0 = 40 \text{ mA} \\ \varphi_s = 15^{\circ} \\ \text{Lacc} = 1.0647 \text{ m} \end{cases}$

calculated with :

Eacc = 25 MV/m

The cavity will be equipped with a HIPPI type FPC, with port 50 Ω , $\phi_{\rm ext}$ = 100mm, $\phi_{\rm ext}$ = 43.5 mm

Achievement of the target Q_{ext} with the **position** and **penetration** of the antenna

Mechanical stiffening of the cavity

saclay

Cavity aimed to work in the **pulsed** mode ⇒ sensitivity to **Lorentz detuning** is critical

Lorentz detuning coefficient : $K_L = \Delta f / E_{acc}^2$

 \bigcirc Insertion of stiffening rings to reduce $|K_L|$

The cones are an element of flexibility in the structure \Rightarrow they increase $|K_1|$

Optimal position for Rring = 91 mm

Mechanical parameters of the cavity saclay with tank and tuner

	SPL	НІРРІ
Nominal wall thickness [mm]	3	4
Cavity stiffness Kcav [kN/mm]	3.84	2.25
Tuning sensitivity $\Delta f/\Delta z$ [kHz/mm]	164	295
K_L with fixed ends [Hz/(MV/m) ²]	-0.55	-2.7
K_L with free ends [Hz/(MV/m) ²]	-5	-20.3
Pressure sensitivity K _P [Hz/mbar] (fixed ends)	1.2	

The cavity will be equipped with a Saclay 4 tuner. The stiffness of the HIPPI - Saclay 4 tuner has been measured : K_{ext} 35 kN/mm

The SPL cavity equipped with this tuner would present a detuning coefficient $|K_L| = 1 \text{ Hz}/(\text{MV/m})^2 \approx |K_L|$ estimated for Tesla

10/11/2009

SPL cavity design by CEA-Saclay - Juliette Plouin

10/11/2009

SPL cavity design by CEA-Saclay – Juliette Plouin

	rfu		#freq 692.459406	r/Q 15.495341	beta_opt 0.55	Qo 5.87048e+10	Rs_nOhm 4.58
_			695.691165	40.295848	0.63	5.85048e+10	4.60
			702 121226	172 029042	0.71	5.825370+10	4.02
1	\sim		703.121230	565 /00512	1.00	5.804750+10	4.04
		$H()N/I(1) \cdot lict$	704.420200	505.455512	1.00	5.61546+10	4.05
			1293.187800	3.150182	0.66	4.06538e+10	9.75
_			1303.568690	7.969888	0.72	4.01921e+10	9.86
-	1	Our curation of the survey of a start	1317.445320	17.344152	0.79	3.95608e+10	10.02
Si	aclav	Operating frequency mode	1329.742220	59.154893	1.00	3.9004e+10	10.16
			1335.734260	107.744313	0.98	3.8525e+10	10.23
		(π) : $f_0 = 704.4$ MHz	7	0.004000		5 0 0 0 0 0 0	
			1450.724780	0.831396	0.92	5.068986+10	11.62
			1400.300080	2 820266	0.89	5.034290+10	11.74
		Namanala	1474.200000	2.059200	0.85	5.050250+10	11.92
		No monopole	1499 066360	2 342662	0.73	5 20134e+10	12.10
			1155.000500	2.5 12002	0.75	5.2015 10 10	12.21
		HOIVI at 21 ₀	1843.272060	0.209069	0.95	3.35164e+10	17.22
		0	1858.324840	0.596186	0.91	3.26306e+10	17.47
			1881.326440	1.603429	0.98	3.28434e+10	17.84
			1911.484360	1.329645	0.94	3.31308e+10	18.33
			1948.248770	1.819111	1.00	3.35394e+10	18.95
			2000.236410	2.451434	0.98	3.13642e+10	19.84
			2039.865120	1.377179	0.78	3.70143e+10	20.53
			2072.798390	3.019703	0.83	3.349e+10	21.12
		Mada at 2111 GA MUZ	2086.249930	5.689452	0.88	3.00335e+10	21.36
			2089.642160	19.164504	1.00	2.90251e+10	21.42
			\rightarrow 2111.640680	10.636820	1.00	2.94648e+10	21.82
		very near $3f_0$	2119.767790	8.476595	1.00	2.65214e+10	21.97
			2138.944200	1.075819	0.95	2.946/4e+10	22.33
			21/5.15//60	1.744804	0.91	3.246690+10	23.00
	Cut off fro	avancies for the mode TM010	2219.009020	4.402100	1.00	3.404310+10	25.60
	Cut-on ne	quencies for the mode invoto	2290.061390	0.330347	0.85	4.00758e+10	24.00
	d oo mm		2150.001050	0.5000.17	0.05	2 5020 10	20.20
	W 80 mm		2464.607050	0.764947	0.95	2.5928e+10	28.82
			2485.980300	1.514541	1.00	2.030470+10	29.28
	Ø 130 mm	1:1/63 IVIHZ	2512.570190	8 505168	0.98	2.044200+10	29.80
	d 1 10		2559.022710	6.760250	0.99	3.40374e+10	30.88
	Ø 140 mm	1637 WHZ	2565.011240	2.855068	0.95	3.43392e+10	31.01
			2639.339900	0.070686	0.90	2.41594e+10	32.69
			2645.191100	0.071469	1.00	2.48068e+10	32.82
			2650.937090	0.150348	1.00	2.47399e+10	32.96
List of monopole HOM calculated with			2657.099030	0.275372	1.00	2.44513e+10	33.10
	2.00		2721.471070	1.230228	0.96	2.23449e+10	34.60
	Supe	erfish between 0 and 3000 kHz	2765.009700	0.249521	0.83	2,99369e+10	35.63
			2781.989510	0.411752	0.87	2.61634e+10	36.04
	AXIS	ymetric calculations	2799.460470	0.229298	0.90	2.30615e+10	36.46
		,	2809.660150	6.941103	1.00	2.09609e+10	36.71
	10/11/2000	SPL cavity design by CEA Saclay	 Juliatta Plauiu 	2			0

10/11/2009

SPL cavity design by CEA-Saclay – Juliette Plouin

Э

HOM (2) : mode at ~ $3f_0$

saclay

#freq	r/Q	beta_opt	Qo	Rs_nOhm
2111.640680	10.6	1.00	2.95e+10	21.82
$Q_{ext antenna} = \omega W/$	7*10 ⁹ (short circu	uit at the ceramic	position)	
	W : energy	dissipated in the c	avity	
	P _{ant} : powe	er dissipated on the	antenna	

- This mode can be excited by the beam dangerous
- Rather high r/Q I significant effect on the beam
- High Q_{ext} antenna I not dissipated by the FPC's antenna
- Mode localized in the tuner side cell could be extracted by the antenna pick-up

CECIAlternate design : cavities with absorbing tubes

saclay

NC tube in stainless steel ($\sigma = 10^6$ S/m)

œ

saclay

Achievements and plans

Achievements

- The Saclay design complies with the requirements of the SPL
 β = 1 cavities
- Thanks to the optimization of the mechanical behavior of the cavity, the Lorentz force detuning is not an issue
- The Saclay 4 tuner is able to tune the cavity without extra stress over the whole frequency range

Plans

- At this stage, the reference design remains the Saclay cavity with cones.
- HOM calculations have still to be completed
- If HOM dampers are needed, we propose an alternate cavity , which could be easily coupled to an absorbing tube
- The detailed mechanical design with the Helium tank has to be realized