

SPL cavity design by IPN Orsay

Guillaume OLRY

Outline

Introduction

RF design

Planning

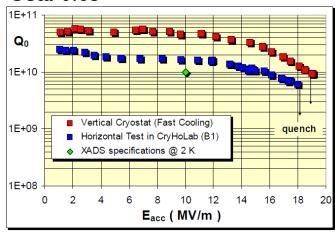
Commitment within

WPII: SRF: SC RF technology for higher intensity proton accelerators & higher energy electron linacs

Task 4: SC Cavities for proton linacs

- Design, fabrication and tests of beta=0.65 and beta=1.0 cavities with the goal to reach announced performances.
- [...]

Sub-task I: Design and fabrication of beta=0.65 704 MHz elliptical cavity equipped with a Titanium helium reservoir. Preparation (BCP, HPR) and assembly in clean room.


[...] Test of the cavity in vertical cryostat [...].

RF parameters

Table 4.11: SPL superconducting linac design parameters

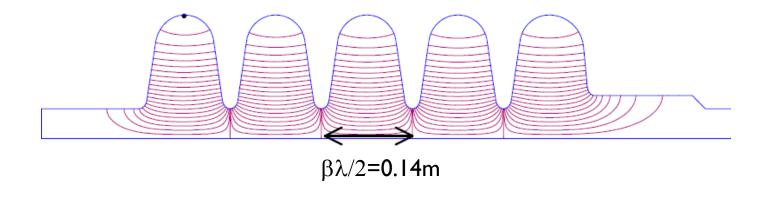
Maximum peak surface electric field	50 MV/m
Maximum peak surface magnetic field	100 mT
Cavity quality factor at 2 K	$\geq 10^{10}$
Accelerating gradient ($\beta = 0.65$)	19 MV/m
Accelerating gradient ($\beta = 1.0$)	25 MV/m
$R/Q \ (\beta = 0.65)$	290 Ω
$R/Q \ (\beta = 1.0)$	570 Ω
Frequency	704.4 MHz
Number of cells	5

Test results of 704 MHz, 5-cell, beta 0.65

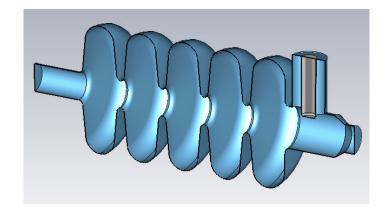
"Performance Improvement of the Multicell Cavity Prototype for Proton LINAC Projects", B. Visentin et al., LINAC 2004

Conceptual design of the SPL II, CERN-2006-006

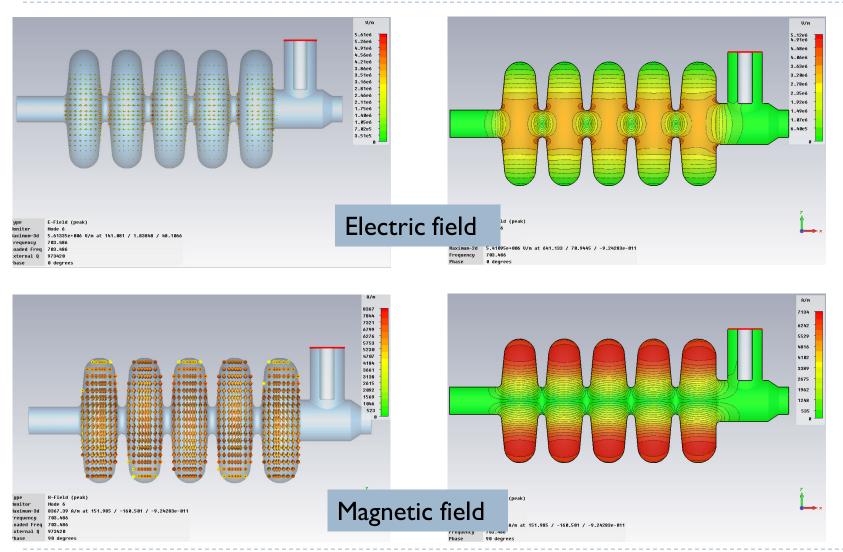
Table 4.9: Medium- β multi-cell cavity parameters (bulk-niobium structures only)

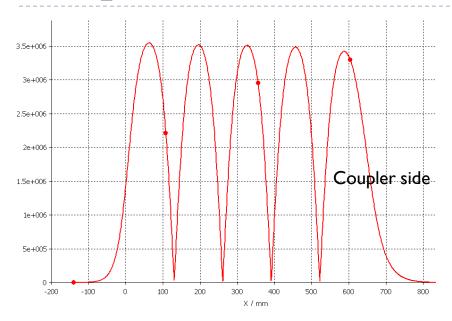

Epk/Ea < 2.63
Bpk/Ea < 5.26 mT/MV/m

Project	f	β	$E_{\rm peak}/E_{\rm acc}$	$H_{\rm peak}/E_{\rm acc}$	N_{cell}	$(R/Q)/N_{cell}$
	[MHz]			[mT/(MV/m)]		$[\Omega]$
RIA	805	0.47	3.34	5.94	6	26.67
TRASCO	704	0.47	3.57	5.88	5	31.60
SNS medium- β	805	0.61	2.71	5.72	6	46.50
CEA/CNRS	704	0.65	2.60	4.88	5	63.00
SNS high-β	805	0.81	2.19	4.72	6	80.50
TTF	1300	1.00	2.00	4.16	9	115.11

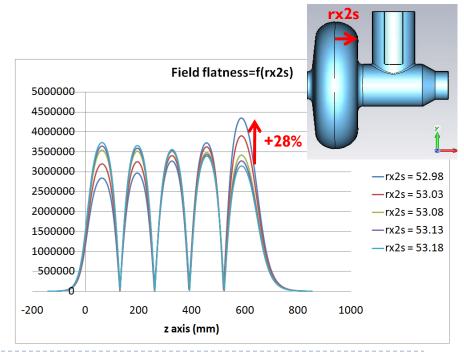

(R/Q) uses the 'linac' definition.

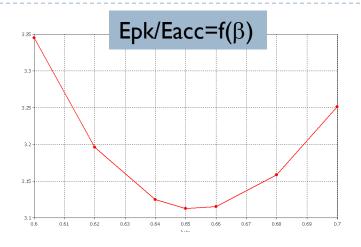
Starting from 2D to 3D

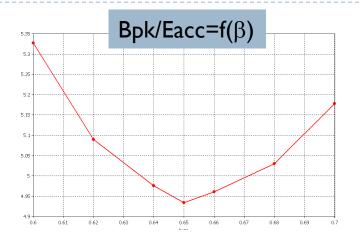

• 1999: Cavity design with SUPERFISH with no RF coupler and HOM ports


 2009: New 3D model with Microwave Studio

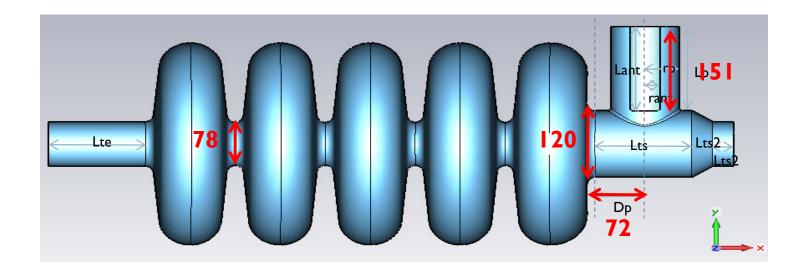
EM fields – fundamental mode


RF parameters


- Field flatness < 5%
- Cell-to-cell coupling=0.74%

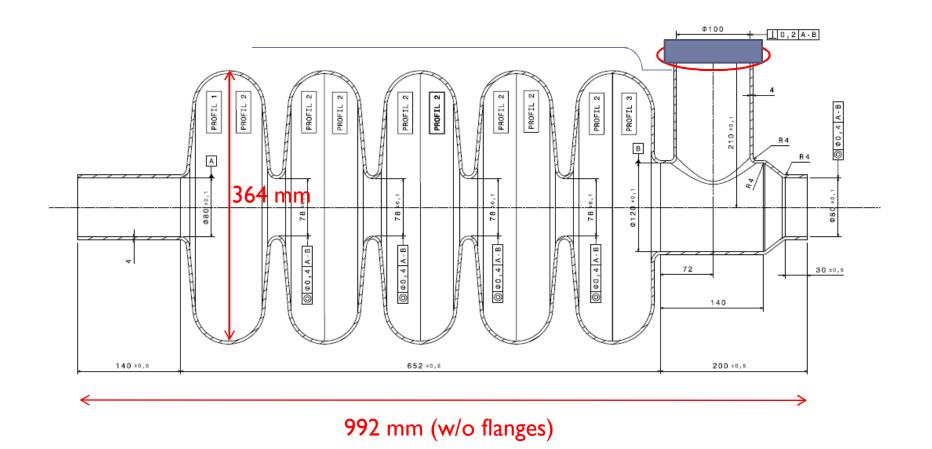

• Half-cell close to RF coupler adjusted for field flatness

 \Rightarrow 0.2 mm \rightarrow +28%


RF parameters (con't)

f (MHz)	703.5	too be matched
Ep/Eacc	3.11	too high
Bpk/Eacc (mT/MV/m)	4.95	Ok
r/Q (Ohm)	352	Ok
G (Ohm)	200	Ok
Vacc @βopt & I Joule (MV)	1.26	Ok
Qo (@2K, Rres= $2n\Omega$)	4 1010	Ok

External coupling Qext


• Goal: Qext=9.7 10^5 with \emptyset ant=43.5 mm and \emptyset port=100 mm

Parameters:

- Øbeam tube=120 mm
- Lant=151 mm (1 mm of penetration inside beam tube)
- Dp=72 mm

Preliminary drawings

• No flanges, no Helium reservoir

Planning

2009

End of November: finish RF design, check HOM's

Mid-November to end of December: mechanical calculations, design of the Helium tank, check the interfaces with the cryomodule (integration of the CEA-type tuning system, and RF coupler)

2010

End of January: technical drawings ready for production, technical specifications for fabrication, Niobium order (3/4 months, ~40 k€)

February to mid-March: cavity call for tender

End of March: choice of the manufacturer

Mid-April: kick-off meeting, beginning of the fabrication (~8 months).

Thank you for your attention

IPN Orsay team

RF: D. Longuevergne (PhD), F. Bouly (PhD)

Mechanics: H-M. Gassot

CAD: S. Rousselot