

Dimensions, pressures and temperatures of cryogenic circuits for the SPL

U. Wagner TE-CRG

• Introducing remarks

• Basics

- Basic parameters
- Basic schemes

• Design criteria

- He II cooling loop
- Coupler cooling loop
- Thermal shield cooling loop

• Summary Table

General note

- As no in-depth study exists the actual "Baseline" concerning T and p values closely follows the design data of the ILC project
- Some of the choices presented here may be discussed and could be changed
- All dimensions given are:
 - Depending on installed mass flow / cooling capacity
 - Intended to give an order of magnitude i.e. not precise on the mm

Assumptions that are considered as decided

• The following is considered as decided:

- Cooling of the cavities with helium II at ~ 2.0 K
- Cavities inside the saturated bath

• Anything else may be discussed / changed

- Examples
- Cooling of the couplers : 5-8 K best compromise? (why not 4.5 K – 300 K e.g.)7
- Cooling of the thermal shield: 40 – 80 K: typical choice by DESY; 50-75: typical choice by CERN

HP-SPL, LP-SPL

- No decision is taken concerning the HP-SPL or LP-SPL option
- Both options are considered in this presentation

Pressures and temperatures as proposed at the moment

Line	Temperature	Pressure
Header A	2.2 K	0.3 MPa
Header B	2.0 K	3.1 kPa
Header C	5.0 K	0.55 MPa
Header D	8.0 K	0.50 MPa
Header E	50 K	1.8 MPa
Header F	75 K	1.7 MPa

These values are fixed

The rest is for "orientation" only and may be modified

Basic Schemes

TE

Cooling loops shown on a single cavity

Thermal shield and coupler cooling in "series"

Basic Schemes

TE

Cooling loops shown on a single cavity

Thermal shield and coupler cooling in "parallel"

• Line A

- Nominal conditions: T = 2.2 K; p = 3.0 bar (my choice)
- Criteria:
 - pressure drop during:
 - Nominal operation
 - Cool-down
 - Warm-up
- Conditions uncertain / may be done via Line C
- Distribution baseline
 - Parallel cooling -> One HeII loop per module

• Line B

- Nominal conditions: T = 2.0 K; p = 31 mbar
- Criteria:
 - Pressure distribution in line B in nominal operation
 - Chosen limit: < +/- 10 mK saturation temperature spread in bath
 - Line B may have a function as "quench buffer"
 - This is not considered for the moment

• Distribution baseline

• Parallel cooling -> One HeII loop per module

He II cooling loop

Design criteria, **installed mass flow**

	LP-SPL		HP-SPL	
	Low B	High β	Low B	High β
Flow / module [g/s]	1.4	2.0	5.5	9.3
Total flow [g/s]	50		271	

He II cooling loop

Diameter of the pumping line "Line B" LP-SPL

SPL Collaboration mtng 11-09

He II cooling loop

Diameter of the pumping line "Line B" HP-SPL

SPL Collaboration mtng 11-09

Line C and Line D

- Nominal conditions: T = 5.0 K to 8.0 K; p = 5.5 bar to 5.0 bar
- Criteria:
 - pressure drop during:
 - Nominal operation
 - Line C only:
 - Cool-downWarm-up

Conditions uncertain / may be done via Line A

Distribution baseline

- Series cooling -> full flow over full length
 - Mass flow

- LP-SPL: 48 g/s; HP-SPL: 57 g/s Conditions similar -> same size LP/HP

• Line E and Line F

- Nominal conditions: T = 50 K to 750 K; p = 18 bar to 17.5 bar
- Criteria:
 - pressure drop during:
 - Nominal operation Cool-down / Warm-up not design criterion

• Distribution baseline

- Series cooling -> full flow over full length
 - Mass flow
 - LP-SPL: 82 g/s; HP-SPL: 98 g/s Conditions similar -> same size LP/HP

TE

- We like to avoid opening of cold safety valves
- Design pressure for cryogenic helium circuits PN25
 - Where possible i.e. all lines except Line B
- Line B design pressure to be defined
 - Proposal 6 bar or 3 bar

Present proposal as working basis

	Line A	Line B	Line C	Line D	Line E	Line F
Nominal T [K]	2.2	2.0	5.0	8.0	50	75
Nominal p [Mpa]	0.3	0.003	0.55	0.5	1.8	1.75
Design Pressure	PN 25	PN 6	PN 25	PN 25	PN 25	PN 25
Min. Di [mm]	30	70	30	30	50	50

Present proposal as working basis

	Line A	Line B	Line C	Line D	Line E	Line F
Nominal T [K]	2.2	2.0	5.0	8.0	50	75
Nominal p [Mpa]	0.3	0.003	0.55	0.5	1.8	1.75
Design Pressure	PN 25	PN 6	PN 25	PN 25	PN 25	PN 25
Min. Di [mm]	30	150	30	30	50	50

Thank you for your attention