

SPL to PS2 transfer line and PS2 injection requirements

W. Bartmann, Ch. Hessler, B. Goddard, M. Eshraqi, M. Meddahi, A. Lombardi

3rd SPL Collaboration Meeting, 11th - 13th Nov 09

PS2 and Transfer Lines Overview

Driving Parameters for TTL1

	LP-SPL	LP-SPL-5G	HP-SPL
Kinetic energy [GeV]	4	5	5
Repetition rate [Hz]	2	2	50
Pulse length [ms]	1.2	1.2	0.4
Average pulse current [mA]	20	20	40
Beam power [MW]	0.192	0.24	4
Max. fract. loss [m ⁻¹] (due to Lorentz stripping) assuming max. P _{loss} =0.1 W/m	5.2e-7	4.17e-7	2.5e-8
Max. dipole field [T]	0.115	0.0950	0.0858
Min. rho [m]	141	206	228

Expression fractional loss from A.J. Jason et al, IEEE Trans.Nucl.Sci. NS-28, 1981 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4331890&isnumber=4331887

Beam Line Geometry

- first part compatible with HP-SPL, second part only compatible with LP-SPL @ 4 GeV
- second part can be compatible with LP-SPL @ 5 GeV if 7.2 m (instead of 5.75 m) long dipoles are used
- Iarge slope of 8.1%

Optics Simulation

Optics Simulation

Aperture Calculation

Multi-particle Simulations

M. Eshraqi

- Simulation code: TraceWin
- Beam current:
 62 mA
- Emittance growth (H/V): 23% / 2%
- Energy spread increase: from ±1.5 MeV to ±7 MeV

Trajectory Correction

100 uncorrected trajectories:

Trajectory Correction: Results

- Each quadrupole equipped with a H/V monitor
- 2 quadrupoles out of 3 equipped with a corrector

Correction OK

Outlook TTL1

- Complete new PS2 LSS1 layout to disentangle injection/extraction region
- New TTL1 version (work in progress):

Parameters for ISOLDE/EURISOL Beam Lines

	ISOLDE	EUR	ISOL
	LP/HP-SPL	LP-SPL	HP-SPL
Kinetic energy [GeV]	1.5	2.5	2.5
Repetition rate [Hz]	1.25	1.25	50
Pulse length [ms]	1.2	1.2	0.8
Average pulse current [mA]	20	20	40
Beam power [MW]	0.045	0.075	4
Max. fract. loss [m ⁻¹] (due to Lorentz stripping) assuming max. P _{loss} =0.1 W/m	2.22e-6	1.33e-6	2.5e-8
Max. dipole field [T]	0.254	0.172	0.149
Min. rho [m]	29.5	64.1	74.0

Expression fractional loss from A.J. Jason et al, IEEE Trans.Nucl.Sci. NS-28, 1981 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4331890&isnumber=4331887

Extraction from SPL to ISOLDE

Input parameters

- p⁺ beam
- 1.4 GeV p⁺, Bρ = 7.14 Tm
- 42 kW
- 0.29 T maximum bending field (0.1 W/m)
- 0.65 m cryomodule radius
- Same radius assumed for Warm-Cold transition

Results

- Use 0.22 T dipole, 4 m long, 123 mrad
- 0.15 m clearance at cryomodule/W-C transition
- Pulsed dipole, 1.25 Hz repetition rate
- Stripping foil outside the extraction region
- Losses
 - in extraction dipole N/N₀ ~1e-7 (0.02 W/m)
 - from stripping foil, 4.3 e-5 (1.8 W)

Layout for 1.4 GeV p+ extraction

Extraction from SPL to EURISOL

Input parameters:

- H⁻ beam
- 2.5 GeV H⁻, Bρ = 11.03 Tm
- 6 MW (!)
- 0.15 T maximum bending field (0.1 W/m)
- 0.65 m cryomodule radius
- Same radius assumed for Warm-Cold transition

Results

- Use 0.15 T dipole, 8 m long (!), 109 mrad
- 0.15 m clearance at cryomodule/W-C transition

Layout with 9m available drift

CERN

Layout with minimum possible drift

Length/Height of WCT for 13 m period

Stripping foil thickness optimisation

PS2 Injection Requirements

Potential H⁻ injection issues for Foil stripping

- Longitudinal Painting → constraint on dispersion in injection region with Δε from dispersion mismatch
- Heating: Injection repetition rate, intensity
- Transverse emittance \rightarrow beam size on foil
- Uncontrolled losses :
 - Halo collimation in TL?
- Kinetic Energy significantly less than 4 GeV → scattering, aperture, …

Potential H⁻ injection issues for Laser stripping

- Longitudinal Painting → large momentum range would dramatically increase required laser power
- Bunch length → increases Laser average power, optimisation to study
- Energy jitter \rightarrow increases range of frequencies to be swept \rightarrow 100 keV jitter OK
- Trajectory jitter
 - Match laser and ion beam as much as possible, vertically more stringent more laser power required (to get necessary power density)
- Kin Energy significantly less than 4 GeV \rightarrow Laser power, emittance growth

Energy Jitter

- Need divergence in Laser beam to cover the spread of exciting resonance frequencies due to Doppler broadening
- Laser frequency range is determined by effective momentum spread
- To have no big effect, need energy jitter one order below initial momentum spread

 $\rightarrow \Delta E_{kin} = 10^{-4} \text{ GeV}$

Laser stripping much more difficult for significantly reduced kinetic energy (e.g. 3.5 GeV) – can only access n=2 state with 1064 nm which means huge emittance growth in last magnetic stripping step

Conclusion TTL1

- TTL1 design:
 - First part compatible with all SPL versions
 - Second part only with LP SPL (4 GeV), if LEP yokes not used but longer magnets also for LP SPL (5 GeV)
 - 8.1 % slope \rightarrow civil engineering!
- Multiple particle simulations
 - Emittance growth (H/V): 23% / 2%
 - Energy spread increase: from ±1.5 MeV to ±7 MeV
- Trajectory correction \rightarrow OK
- Outlook:
 - TTL1 optics studies ongoing because of new PS2 injection region design

Conclusion Extraction and PS2 Injection

- Extraction to ISOLDE \rightarrow OK
- Extraction to EURISOL → Not feasible within constraints!
 - 2 possibilities:
 - Opening up distance between cryomodules to 16.4 m and reducing radius of WC transition to 43 cm
 - Within given **13 m**, reduce WC transition length to **90 cm** and radius to **55 cm**
- PS2 Injection
 - Study on H⁻ injection is work in progress...
 - Significantly reduced energy makes injection much more difficult!
 - Large momentum range and bunch length increase Laser power → need to optimise
 - Energy jitter of 100 keV → OK
 - Losses in injection region \rightarrow Halo collimation in TL?

Back up slides

Beam and Twiss Parameters

SPL end point (Source: M. Eshraqi):

	x plane	y plane
norm. 1s emittance [µm]	0.351	0.350
beta [m]	106.5	117.3
alpha	-0.055	-1.352
dispersion [m]	0	0
dispersion derivative	0	0

Injection point (Source: W. Bartmann):

	x plane	y plane
beta [m]	15	15
alpha	0	0
dispersion [m]	-0.4	0
dispersion derivative	0	0

Trajectory Correction: Assumed Errors

- Quadrupole displacement errors: Gaussian distribution in x/y with σ = 0.2 mm, cut at 3σ
- Dipole field errors: Gaussian distribution of deflection with σ = 10 μrad, cut at 2σ (→ relative field error of 5e-4)
- Dipole tilt errors: Gaussian distribution with σ = 0.2 mrad, cut at 4σ
- Monitor errors: Flat random distribution of ±0.5 mm in both planes
- Injection error: Gaussian distribution of position / angle with σ = 0.5 mm / 0.05 mrad, cut at 2σ
- Monitor failure probability: 5%