Survey for SPL

Dominique Missiaen BE-ABP/SU

Outline

- Scope & Main Parameters
- Technical Description
 - Metrological mechanical controls
 - Alignment activities
 - Complementary activity
- Conclusion

Scope of the Work Package

Large Scale Metrology Work

- Metrology of Linac Modules
- Survey and Alignment Work

Linac

Dominique Missiaen BE-ABP-SU, Survey for SPL

Main Parameters

Tunnel Alignment Precisions (Linac Beam Dynamics WP)

- Linac
 - 0.5 mm for the cryomodules at 1 sigma
 - 0.3 mm for the quadrupoles at 1 sigma
- Tunnel floor (Civil Engineering WP)
 - Tolerance: +0 / -5 mm
 - Smoothness: < 2 mm over 2 m</p>
 - Stability: movements up to 5 mm during first few years
- Number of elements and modules to measure or align
 - ~30 cryomodules
 - Warm components ?

Technical Description

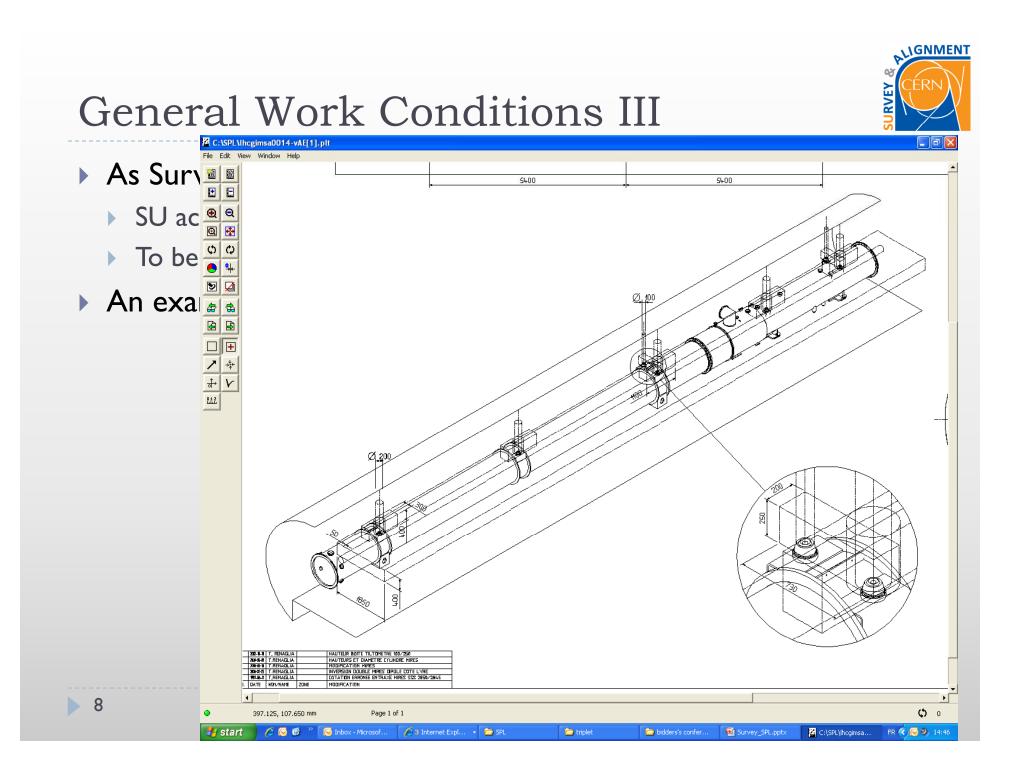
- Linac cryomodules
 - Fiducialisation of Modules w.r.t to a reference axis

Accelerator Alignment Activities

- Spatial Data Controls
- Metrology
- Install and determine geodetic reference networks
- Mark-out beam line and supports
- First alignment of beam line elements
- Final alignment / Smoothing
- Complementary Activities
 - Civil Engineering Controls
 - As-built Measurements

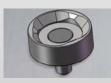
General Work Conditions I

- All objects to be measured MUST be equipped with survey reference targets and a tilt reference
 - Same precise position for all elements of same type and design



General Work Conditions II

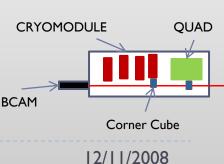
- All objects to be positioned / aligned MUST be equipped with a precise positioning system appropriate to the alignment precisions and time constraints imposed by the project
 - Standardisation of systems for elements and modules



Mechanical Control Measurements

- Determination of the reference axis
 - Alignment of the string of cavities and quadrupoles with respect to a reference beam axis
- Determination of the position of the alignment fiducials w.r.t a reference axis
 - Measurement or adjustment of fiducials ?
- Could be done with a laser tracker
 - Same size of objects as the LHC dipoles
 => accuracy in the range of 0.07 mm at sigma

Radial sensors


Cryosta

Stability of the reference axis

- During the prototyping stage there is a need to verify the internal position of the components (axis of the quads for example) w.r.t fiducials Silica Rod Coldfoot
- SU Experience in this domain
 - Capacitive sensors inside the LHC dipoles cold foot
 - SMARTEC system
 - Interferometry with two laser fibers used on some prototypes of LHC dipoles cryostats
 - Still available at CERN
 - BCAM system as proposed for HIE-Isolde
 - CCD camera, lens and a corner cube (or another BCAM)
 - Never tested in cold conditions

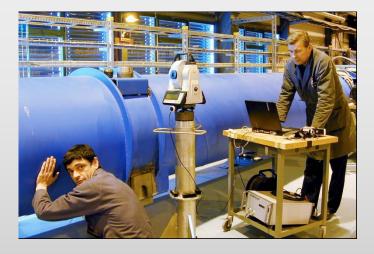
Dominique Missiaen BE-ABP-SU, Survey for SPL

Ceramic sensor box

Vertical sensor

Cold mass

Geodetic Reference Networks


- Tunnel Geodetic Reference Network
 - Established as soon as the tunnel is accessible
 - Pillar based or points in the floor
 - Reference network for accelerator alignment activities
 - Network tied to existing machines (Linac4 and SPS if possible)
 - Transferred direct from the existing machines
 - If the link not available possibility that we need a shaft (to surface in the PS2 area or to TI2)
 - And Gyroscopic measurements also needed

Initial Positioning

Constraints

- After the geodetic reference network is established
- The beam line MAD File inserted in the SURVEY database
- Metrology work completed and element/module data available and inserted in the SURVEY database
- Clear space must be maintained for Survey activities
 - Instruments
 - Survey reference targets
 - Positioning Systems
 - Measurement lines-of-sight

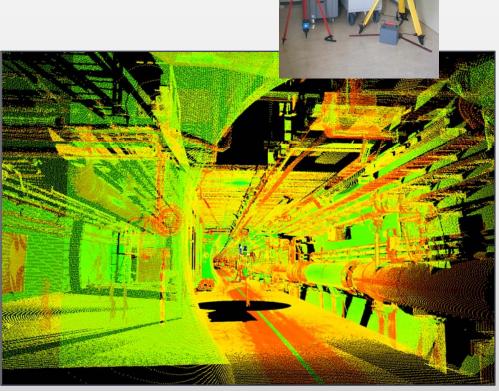
Initial Positioning (II)

- Carried out with a total station, nylon offsets, direct levelling, inclinometer
- Linac Modules and Elements
 - Alignment from geodetic reference network
- Line-of-sight holes used to ensure alignment from Linac4

Final Alignment / Smoothing

Constraints

- After interconnection of elements, prior to commissioning
- Control tilts, vertical and horizontal positions
- Measurement directly on the beam line elements
 - Inclinometer, direct levelling, distances and nylon wire offsets
 - Installation of flexible plastic ducting for wire offset measurements


Link to be done with adjacent lines (L4, SPS ?)

As-built Measurements

Laser Scanner measurements

- Provides 3D documentation
- Saves time by indentifying potential conflicts
- Civil engineering
- Installed infrastructure
- Machine
- Locations
 - Linac tunnel

CERN

Conclusions

The alignment of the SPL is not really challenging

- The alignment tolerances are not too tight
- Problem could come from the late possibility to connect with a metrology SPL to the SPS => perhaps necessity to have a shaft to surface or a link to Ti2
- Internal metrology will be more challenging
 - In particular monitoring of the cavities and quads with respect to external fiducials on the cryostat.

Thank you for your attention

Dominique Missiaen BE-ABP-SU, Survey for SPL