SENSITIVITY STUDY ON THE SPL : DEFINITION OF ALIGNMENT TOLERANCES, DIAGNOSTICS AND CORRECTION SYSTEMS

Overview of SPL

Source: 70 mA of H⁻ ions at 45 keV

RFQ: 60 mA, 352.2 MHz

DTL: Three tanks (FFDD+FD)

CCDTL: 7 Tanks (FD)

PIMS: 12+1 Tanks (FD)

Elliptical: 2 generations of elliptical cavities, $\beta 0=0.65$ and 30

(FD or F0D0) 704.4 MHz

SPL layout

5 imes High β

Extraction

6 imes High β

Extraction

 $12 \times \text{High } \beta$

Doublet (FD), baseline, design:

10 low beta cryomodules (780 MeV)

5 high beta cryomodules (1516 MeV)

Extraction to ISOLDE

6 high beta cryo. (2586 MeV)

Extraction to EURISOL

 \rightarrow 12 high beta cryomodules (Final Energy 4989 MeV)

SPL design lattices: FD vs. F0D0

Low beta elliptical

SPL Beam dynamics (1/2)

5

RMS beam envelopes for a beam generated at PIMS input for the FD option

RMS beam envelopes for a beam generated at PIMS input for the FODO option

SPL Beam dynamics (2/2)

6

Δε%

12.5

9.4

3.8

unit: π mm mrad (RMS)

Δε%

9.5

6.5

16.6

Error study philosophy (1/3)

- 7
- Test the line from PIMS to 5 GeV with errors on magnets (misalignment and gradient):
 - Check how the lattices (PIMS, HEBT, SPL) "amplify" the errors
 - Look for beam losses, emittance increase, output beam misalignment
 - Find the tolerance range and foresee different alignment tolerances for PIMS and SPL

Error study philosophy (2/3)

- 8
- Test the PIMS and HEBT line with errors on magnets (misalignment and gradient) <u>and</u> with a residual beam misalignment:
 - Define the alignment tolerances for PIMS
 - Switch on the steerers and see how good the beam out of HEBT can be centered
 - Define a residual beam misalignment as input for the SPL alone

Error study philosophy (3/3)

- 3. Test the SPL alone with the residual steering from HEBT:
 - Check the tolerances without correction
 - Find the limit for magnet misalignment
 - Switch on the steerers and correct it
- 4. Check the differences between the doublet (FD) layout and the FODO layout for SPL
 - Different tolerances?
 - Different correction strategy?

Criterion of tolerances

- □ 100% transmission
 - Correction system not be used to correct structure misalignment but input beam misalignment
- Emittance growth less than 20% (3 sigma)

Error study resume

11

	STEP I	STEP II	STEP III	
50k particles from RFQ to PIMS, 500 runs each error configuration, TraceWin (CEA)				
SPL design	FD and F0D0	common	FD and F0D0	
Input beam misalignment	none	±0.2mm ±0.2mrad	±0.2mm ±0.2mrad	
Magnet errors:				
Gradient	±0.5%	±0.5%	±0.5%	
Displacement	\pm 0.1 mm \pm 0.2mm \pm 0.3mm \pm 0.5mm	±0.1mm	±0.1mm ±0.2mm ±0.3mm	
Discovered tolerances:				
	± 0.1 mm for PIMS ± 0.2 mm for SPL	±0.1mm ±0.1mrad residual beam mis.	\pm 0.2mm for SPL	
P. A.	Posocco - "Sensitivity stud	dies on the SPL" 11/12/2	2009	

STEP I: From PIMS to 5GeV (1/3)

12

Comparison between the doublet (FD) and the F0D0 solutions.

All the line magnets are "Gaussian" randomly displaced and an error of 0.5% on the gradient is added.

STEP I: From PIMS to 5GeV (2/3)

Horizontal emittance

Magnet transverse displ. error (mm)

Vertical emittance

STEP I: From PIMS to 5GeV (3/3)

FD configuration (0.2 mm magnet displacement)

FODO configuration (0.2 mm magnet displacement)

STEP II: From PIMS to SPL

± 0.2 mm ± 0.2 mrad input beam misalignment		
± 0.1 mm quad misalignment ($\pm 0.5\%$ on gradient)		
AFTER CORRECTION		

Δε horizontal	(0.013±0.003) %
Δε vertical	(0.017±0.001) %
Δε longitudinal	(0.016±0.001) %
X center	(0.096±0.003) mm
Y center	(0.103±0.001) mm
X' center	(0.038±0.040) mrad
Y' center	(-0.070±0.067) mrad

Since no significant emittance increase, used the nominal HEBT out distribution displaced ($\pm 0.2 \text{ mm} \pm 0.2 \text{ mrad}$) for SPL alone simulations

SPL design and diagnostics

16

Low beta elliptical

STEP III: SPL alone (1/4)

17

120% Comparison 00% transmission limit between the doublet (FD) and 100% the F0D0 solutions. 80% Transmission All the line magnets are 60% "Gaussian" randomly displaced and an 40% F0D0 - steerers OFF error of 0.5% on FD - steerers ON the gradient is added. 20% FOD0 - steerers ON For all cases: ±0.2 mm ±0.2 0% mrad input beam 0.1 0.2 0.3 0.4 0 misalignment. Magnet transverse displacement error (mm)

STEP III: SPL alone (2/4)

STEP III: SPL alone (3/4)

19

P. A. Posocco - "Sensitivity studies on the SPL" 11/12/2009

STEP III: SPL alone (4/4)

20

P. A. Posocco - "Sensitivity studies on the SPL" 11/12/2009

Conclusions on alignment

- PIMS and HEBT must be aligned within ±0.1mm (LINAC4 tolerance)
- SPL, due to the larger bore and the different lattice, requires a slightly more relaxed limit (±0.2mm)
- □ The correction system foresees <u>at the moment</u>:
 - 1 steerer for each quad (strength less than 0.02 Tm)
 - I BPM after 2 quads (just before the following quad)
- Further diagnostics still in progress