W/Z-Gamma Production at NLO in Powheg Method

Dart-yin Soh

IPPP, Durham
Supervised by P. Richardson
Academia Sinica
Sun Yat-sen University

Outline:

- Motivations
- Status of W/Z-Gamma Calculations
- Powheg Method
- Matrix element Calculations
- Results
- Plans

Why Vector Boson-Photon Production?

Testing Standard Model:

- Non-abelian self-couplings WWY coupling: CP- conserving κ and λ and CP -violating $\tilde{\kappa}$ and $\tilde{\lambda}$?
- Are there ZZ_{γ} or $\mathrm{Z}_{\gamma \gamma}$ couplings? Gauge symmetry breaking!
- Agree well with the standard model and set limits on anomalous couplings in Tevatron

$$
\begin{gathered}
\text { CDF }-2.3<\Delta \kappa<2.3(\lambda=0) \\
-0.7<\lambda<0.7(\Delta \kappa=0)
\end{gathered}
$$

Why Vector Boson-Photon Production?

Beyond the Standard Model in LHC?

- Effectively anomalous couplings are remarkable at hight scale \hat{s} :

$$
\Delta g(\hat{s})=\Delta g_{0} /\left(1+\hat{s} / \Lambda_{W}^{2}\right)
$$

- Charged Higgs decay to W-Photon in SUSY?

Not tree level, but loop!

Important backgrounds to New Physics in LHC

Status of Phenomenology Calculations

- Leading Order:
- Standard $\mathrm{W} \gamma$ and $\mathrm{Z} \gamma$, anomalous coupling for $\mathrm{W} \gamma$:
- BHO generator, standalone and implemented in Pythia
- Next to Leading Order:
- NLO matrix element: real radiations, virtual loop and hard collinear part:
- Standalone BHO generator
- Combine with shower MC in Pythia

But Wait!

- LHC: high energy scale and high luminosity: we need precise NLO calculations
- NLO: additional parton radiation + naïve parton Shower double counting and invalid in IR phase space region
- Result as inconsistent NLO, i.e. just LO accuracy!
- Soft gluon radiation cut δ_{s} and photon isolation cut for quark radiation δ_{c} to cancel the IR divergence

Methods to match NLO matrix element
with NLO parton shower:
MC@NLO and Powheg in Herwig++

Powheg Method

- The hardest radiation is generated first
- NLO accuracy
- p_{T} order, most case have NLL accuracy, but not so straightwards in angular order
- Generate other parton radiation by Shower Monte Carlo
- Smooth IR region to high p_{T} region, no phase-space slicing

Powheg Method

- hardest radiation by Sudakov form factor

$$
\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)=\exp \left\{-\sum_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \int \frac{\left[d \Phi_{\mathrm{rad}} R\left(\boldsymbol{\Phi}_{n+1}\right) \theta\left(k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)-p_{\mathrm{T}}\right)\right]_{\alpha_{\mathrm{r}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{r}}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
$$

- The cross-section of Powheg:

$$
\begin{aligned}
d \sigma= & \sum_{f_{b}} \bar{B}^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right) d \boldsymbol{\Phi}_{n}\left\{\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}^{\min }\right)\right. \\
& \left.+\sum_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \frac{\left[d \Phi_{\mathrm{rad}} \theta\left(k_{\mathrm{T}}-p_{\mathrm{T}}^{\min }\right) \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}\right) R\left(\boldsymbol{\Phi}_{n+1}\right)\right]_{\alpha_{\mathrm{r}}}^{\bar{\Phi}_{n}^{\alpha_{r}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
\end{aligned}
$$

where the NLO matrix element is

$$
\begin{aligned}
\bar{B}\left(\Phi_{n}\right)= & B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right) \\
& +\left[\int d \Phi_{r a d}\left[R\left(\Phi_{n+1}\right)-C\left(\Phi_{n+1}\right)\right]+\int \frac{d x}{x}\left[G_{a}\left(\Phi_{n, a}, x\right)+G_{b}\left(\Phi_{n, b}, x\right)\right]\right]^{\Phi_{n}=\Phi_{n}}
\end{aligned}
$$

Shower Monte Carlo and NLO

- Afterwards shower by Sudakov form factor

$$
\Delta_{i}\left(t_{I}, t\right)=\exp \left[-\sum_{(j k)} \int_{t}^{t_{I}} \frac{d t^{\prime}}{t^{\prime}} \int d z \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} P_{i, j k}(z)\right]
$$

- Cross-section

$$
d \sigma=d \Phi_{B} B\left(\Phi_{B}\right)(\underbrace{\Delta_{t_{1}, t_{0}}}_{\text {No radiation }}+\sum_{(j k)} \underbrace{\Delta_{t_{t}, t} \frac{\alpha_{s}(t)}{2 \pi} P_{i, j k}(z) \frac{d t}{t} d z \frac{d \phi}{2 \pi}}_{\text {radiation }})
$$

- In small p_{T} region, regain ordinary shower:

$$
\frac{R(\Phi)}{B\left(\Phi_{B}\right)} d \Phi_{\mathrm{rad}} \approx \frac{\alpha_{s}(t)}{2 \pi} P_{i, j k}(z) \frac{d t}{t} d z \frac{d \phi}{2 \pi}
$$

- In large p_{T} region, $\because \Delta_{t, t^{\prime}} \rightarrow 1$, regain NLO ME:

$$
d \sigma=\bar{B} \times \frac{R}{B} \approx R \times\left(1+\mathcal{O}\left(\alpha_{s}\right)\right) \quad \int \delta\left(\Phi_{B}-\bar{\Phi}_{B}\right) d \sigma=\bar{B}\left(\bar{\Phi}_{B}\right)
$$

Gluon Radiation

- We try to calculate real radiation term $R\left(\Phi_{1}\right)$ only for gluon radiation first (in fact 8 diagrams)

- This calculations can be done numerically in Herwig++
- Calculate cross section factor and Jacobian to get:

$$
\frac{R\left(\Phi_{1}\right)}{B\left(\Phi_{B}\right)}=\frac{\left|M^{R}\left(\Phi_{R}, \Phi_{B}\right)\right|^{2}}{\left|M^{B}\left(\Phi_{B}\right)\right|^{2}} \cdot \frac{\lambda^{1 / 2}\left(\hat{s}^{R}, s_{1}, 0\right) \cdot \lambda^{1 / 2}\left(s_{1}, m_{V}^{2}, 0\right) \cdot \hat{s}^{B^{2}}}{\lambda^{1 / 2}\left(\hat{s}^{B}, m_{V}^{2}, 0\right) \cdot 16 \pi \cdot 4 \pi^{2} \cdot \hat{s}^{R^{2}} s_{1}} \cdot\left|\frac{\partial\left(\cos \theta_{g}, s_{1}\right)}{\partial\left(y_{g}, p_{T_{g}}\right)}\right|
$$

In the Catani-Seymour framework

- Implement Powheg in C-S subtraction framework:
- Born and radiation phase space mapping

$$
\Phi_{n+1} \Rightarrow \bar{\Phi}^{(\alpha)}{ }_{B}, \Phi^{(\alpha)}{ }_{R}
$$

- Separate the real radiation into pieces

$$
R^{(\alpha)}\left(\Phi^{(\alpha)}{ }_{R}, \Phi^{(\alpha)}{ }_{B}\right)
$$

with different singular in Catani-Seymour Formalism:

$$
R^{(\alpha)}=R \cdot S^{(\alpha)} \quad \sum_{\alpha} S^{(\alpha)}=1
$$

Where $S^{(a)}$ are calculated with Catani-Seymour dipole function

$$
\mathcal{S}_{\alpha}=\frac{\mathcal{D}_{\alpha}}{\sum_{\beta} \mathcal{D}_{\beta}}
$$

NLO matrix element

Gluon radiation \& quark radiation
soft and conlinear with
incoming partons
collinear with incoming partons and outgoing photon (photon fragmentation)

- We first consider contribution of gluon radiation and IR singularities in virtual loop and PDF
- Real radiation will be added in the codes
- The dipoles part $d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)$ to cancel IR divergence in virtual loop $d \sigma_{a b}^{V}\left(p_{a}, p_{b}\right)$ and PDF counter-term $d \sigma_{a b}^{C}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)$
- Convenient to deal with $\int_{\Phi_{R}} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)+d \sigma_{a b}^{c}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)$ together

$$
\begin{aligned}
\sigma_{a b}^{\mathrm{NLO}}\left(p_{a}, p_{b} ; \mu_{F}^{2}\right) & =\int_{m+1}\left(d \sigma_{a b}^{R}\left(p_{a}, p_{b}\right)-d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)\right) \\
& +\left[\int_{m+1} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)+\int_{m} d \sigma_{a b}^{v}\left(p_{a}, p_{b}\right)+\int_{m} d \sigma_{a b}^{C}\left(p_{a}, p_{b} ; \mu_{F}^{2}\right)\right]
\end{aligned}
$$

Catani-Seymour formalism

- Subtraction formalism to single out different IR singularities by various dipole functions
- Mapping Born and radiation phase space smoothly
- Make the real radiations, virtual loop and initial \& final collinear remnants finite respectively: compare them

In our case, there are kinds of dipoles:

1. Initial $\mathrm{q} / \overline{\mathrm{q}}$ emits a gluon, with spectator initial $\mathrm{q} / \overline{\mathrm{q}}: \quad \mathcal{D}^{\mathrm{qg}, \overline{\mathrm{q}}} \quad \mathcal{D}^{\overline{\mathrm{q}} g, \mathrm{q}}$
2. Initial gluon emits q / \bar{q}, with spectator initial ${ }_{\mathrm{q}} / \overline{\mathrm{q}}: \mathscr{D}^{\mathrm{gq}, \overline{\mathrm{q}}} \mathcal{D}^{\mathrm{g} \bar{q}, \mathrm{q}}$
3. Initial gluon emits q / \bar{q}, with spectator, photon: $\mathscr{D}_{\gamma}^{\mathrm{gq}} \quad \mathscr{D}_{\gamma}^{\mathrm{g} \bar{q}}$
4. Final $\mathrm{q} / \overline{\mathrm{q}}$ emits photon $\mathscr{D}_{q \gamma}^{\mathrm{b}} \mathcal{D}_{\overline{\mathrm{q}} \gamma}^{\mathrm{b}}$

- Dipoles of kind 1 . are simpler without $\mathscr{D}_{k}^{\text {ai }}$
- Kind 2. \& 3. are with different initial parton (PDF) from 1. but the same Born part $\left|M^{B}\right|_{a b}^{2}\left(p_{a}, p_{b}\right)$, will be considered with photon fragmentation
- Kind 4. associated with photon fragmentation are QED dipoles
- After integrating out the phase space of the radiation parton ai, dipoles part can be separated into pieces depending on dimensional factor ε and faction x

$$
\begin{aligned}
& m+1, a b\langle 1, \ldots, m+1 ; a, b||1, \ldots, m+1 ; a, b\rangle_{m+1, a b} \\
& \quad=\sum_{k \neq i} \mathcal{D}_{k}^{a i}\left(p_{1}, \ldots, p_{m+1} ; p_{a}, p_{b}\right)+\mathcal{D}^{a i, b}\left(p_{1}, \ldots, p_{m+1} ; p_{a}, p_{b}\right)+\ldots
\end{aligned}
$$

Cancelling the IR divergence

- $\int_{\Phi_{b}} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)+d \sigma_{a b}^{c}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)$ is separated into three operators: $I(\varepsilon)$ ${ }^{\Phi_{R}}$ with up to $\frac{1}{\varepsilon^{2}}$ divergence exactly cancels that in $d \sigma_{a b}^{V}\left(p_{a}, p_{b}\right)$
- and operators $K^{a j}(x)+P^{a \mu}\left(x, \hat{s}, \mu_{F}^{2}\right)$ have already cancelled divergences in initial parton PDFs $d \sigma_{a b}^{C}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)$, so finite.

$$
\begin{aligned}
& \int_{m+1} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)+\int_{m} d \sigma_{a b}^{C}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)= \\
& \int_{m}\left[d \sigma_{a b}^{B}(p, \bar{p}) \cdot \boldsymbol{I}(\epsilon)\right]+\sum_{a^{\prime}} \int_{0} d x \int_{m}\left[\boldsymbol{K}^{a, a^{\prime}}(x) \cdot d \sigma_{a^{\prime} b}^{B}(x p, \bar{p})\right] \\
& +\sum_{a^{\prime}} \int_{0}^{1} d x \int_{m}\left[\boldsymbol{P}^{a, a^{\prime}}\left(x p, x ; \mu_{F}^{2}\right) \cdot d \sigma_{a^{\prime} b}^{B}(x p, \bar{p})\right] \\
& +\sum_{b^{\prime}} \int_{0}^{1} d x \int_{m}\left[\boldsymbol{K}^{b, b^{\prime}}(x) \cdot d \sigma_{a b^{\prime}}^{B}(p, x \bar{p})\right] \\
& +\sum_{b^{\prime}} \int_{0}^{1} d x \int_{m}\left[\boldsymbol{P}^{b, b^{\prime}}\left(x \bar{p}, x ; \mu_{F}^{2}\right) \cdot d \sigma_{a b^{\prime}}^{B}(p, x \bar{p})\right]
\end{aligned}
$$

Finite Dipoles \&Virtual loop

- The finite part of the first term after cancelling IR divergence:

$$
\int_{\Phi_{R}} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right) \otimes I(\varepsilon) \xrightarrow{\text { finite }} \frac{\alpha_{S}}{2 \pi} C_{F}\left[2\left(5-\frac{\pi^{2}}{3}\right) d \sigma_{0}^{B}+3 d \sigma_{1}^{B}+2 d \sigma_{2}^{B}+O(\varepsilon)\right]
$$

where

$$
d \sigma^{B}=d \sigma_{0}^{B}+\varepsilon \cdot d \sigma_{1}^{B}+\varepsilon^{2} \cdot d \sigma_{2}^{B}
$$

- The finite parts in virtual loop $d \sigma_{a b}^{V}\left(p_{a}, p_{b}\right)$ is:

$$
\mathcal{N}_{\text {in }} \frac{d \phi_{B}\left(p_{a}+p_{b}\right)}{n_{s, a} n_{s, b} \Phi\left(p_{a}, p_{b}\right)} \frac{G^{V}\left(\alpha, \theta_{W}, \cdots\right)}{2} \frac{Q_{a} t+Q_{b} u}{t+u}\left[Q_{a} F^{V}(t, u, \hat{s})+Q_{b} F^{V}(u, t, \hat{s})\right]
$$

where $G^{\nu}\left(\alpha, \theta_{W}, \cdots\right)$ is the coupling square factor for boson V

Initial states collinear remnants

- Thank to the simple color structure and color conservation,
- color dependent matrix element in collinear remnants $d \sigma_{a b}^{C}\left(p_{a}, p_{b}, \mu_{F}^{2}\right)$ is separated into a factor $\times\left|M^{s}\left(p_{r}, p_{v}, x_{a} p_{a}, p_{b}\right)\right|^{2}$ or $\mid M^{s}\left(p_{r}, p_{v}, p_{a},\left.x_{b} p_{b}\right|^{2} \quad\left(p_{i}=z_{i} \cdot P\right)\right.$
- Change the integrated order of x and z, x can be integrated out:

$$
\int_{0}^{1} d x x_{0}^{1} d z f(z) \sigma(x z)=\int_{0}^{1} d z \int_{z}^{1} d x f\left(\frac{z}{x}\right) \frac{\sigma(z)}{x}
$$

- I find $\left(\frac{2}{1-x} \ln \frac{1-x}{x}\right)$ in $\bar{K}^{9 \varphi}(x)$ should be different from that in [1] to avoid $\mathrm{X}=\mathrm{O}$ singularities $\quad-\left(\frac{2}{1-x}\right)+\ln x+\left[\frac{2}{1-x} \ln (1-x)\right]_{+}-\delta(1-x) \frac{\pi^{2}}{3}$
- So $\sum_{a^{\prime}} \int_{d x} \int_{\Phi_{B}} d \sigma_{a^{\prime} b}^{B}\left(x p_{a}, p_{b}\right) \otimes(K+P)^{a a^{\prime}}(x)+\sum_{b^{\prime}} \int_{d y} \int_{\Phi_{B}} d \sigma_{a b^{\prime}}^{B}\left(p_{a}, y p_{b}\right) \otimes(K+P)^{b b^{\prime}}(y)=$

$$
-\frac{\alpha_{s}}{2 \pi} C_{F} d \sigma_{0}^{B}\left(p_{a}+p_{b}, z_{a}, z_{b}\right) \otimes\left(K P\left[z_{a}, f_{a}\right]+K P\left[z_{b}, f_{b}\right]\right)
$$

where functionals

$$
\begin{aligned}
K P[z, f]= & \int_{z}^{1}\left[\ln \frac{(1-x)^{2} \hat{s}}{x \mu_{F}^{2}}\left(\frac{2}{1-x}-\frac{1+x^{2}}{1-x} \frac{f(z / x)}{x \cdot f(z)}\right)+\frac{2}{1-x} \ln x\right] d x \\
& +\int_{0}^{z} \frac{2}{1-x} \ln \frac{(1-x)^{2} \hat{s}}{\mu_{F}^{2}} d x-\int_{z}^{1} d x \frac{1-x}{x} \frac{f(z / x)}{f(z)}+\left(5-\frac{\pi^{2}}{3}\right)
\end{aligned}
$$

Current numerical results

- With photon cuts: $p_{T} \geq 20 \mathrm{GeV},|\eta| \leq 2.7$, multi-particle interaction, hadronization and jet decay turned off, only hardest parton emission
- Run for 1000 events

ME+Parton shower	Total cross sections
NLO+gluon Powheg	$48(+-2) \mathrm{pb}$
NLO+no Powheg	$49(+-2) \mathrm{pb}$
LO(NLOweight=1)+gluon Powheg	$34(+-1) \mathrm{pb}$
NLO(only virtual loop)+gluon Powheg	$40(+-1) \mathrm{pb}$

Differential cross sections:

Outlook and Plan

- Adding finite gluon radiation part to NLO matrix element
- Further calculations for quark radiation collinear remnants of photon fragmentation and their dipoles to matrix element \& Powheg: Completed NLO
- How NLO corrects LO
- Anomalous WW γ couplings and beyond SM
- W/Z decay: ask for additional contributions of photon radiates from decayed lepton

