LO ME+PS merging; Tuning with early Atlas data

Frank Siegert

Institute for Particle Physics Phenomenology, Durham University & University College London

29th June 2009, Lund

LO ME⊕PS merging in Sherpa

2 Using Rivet to tune to early ATLAS data

Parton Showers: QCD evolution

Evolution equation in terms of Sudakov form factor Δ

$$\frac{\partial}{\partial \log(t/\mu^2)} \frac{g_a(z,t)}{\Delta_a(\mu^2,t)} = \frac{1}{\Delta_a(\mu^2,t)} \int_z^{\zeta_{\max}} \frac{\mathrm{d}\zeta}{\zeta} \sum_{b=q,g} \mathcal{K}_{ba}(\zeta,t) g_b(z/\zeta,t)$$
$$\Delta_a(\mu^2,t) = \exp\left\{-\int_{\mu^2}^t \frac{\mathrm{d}\bar{t}}{\bar{t}} \int \mathrm{d}\zeta \sum_{b=q,g} \frac{1}{2} \mathcal{K}_{ab}(\zeta,\bar{t})\right\}$$

• Kernel describes parton splitting: $\mathcal{K}_{ab}(z,t) \rightarrow \frac{1}{\mathrm{d}\sigma_a^{(N)}(\Phi_N)} \frac{\mathrm{d}\sigma_b^{(N+1)}(z,t;\Phi_N)}{\mathrm{d}\log(t/\mu^2)\,\mathrm{d}z}$

Solution: Probability for no (forward) shower branching between two scales

$$\mathcal{P}_{\text{no}, a}(t, t') = \frac{\Delta_a(\mu^2, t')}{\Delta_a(\mu^2, t)} \stackrel{!}{=} \mathcal{R}$$

 \Rightarrow MC method for dicing successive branching scales using random number $\mathcal{R} \in [0,1]$

Preparation for ME/PS merging

Use different splitting kernels in different regions in phase space, but: **Preserve total evolution equation!**

Preparation: Slicing the phase space

Emission phase space divided by parton separation criterion $Q_{ab}(z,t)$

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

• $Q_{ab}(z,t)$ has to identify logarithmically enhanced phase space regions

Similar to a jet measure

Evolution factorises

Sudakov form factor:

$$\Delta_a(\mu^2, t) = \Delta_a^{\mathrm{PS}}(\mu^2, t') \ \Delta_a^{\mathrm{ME}}(\mu^2, t')$$

No-branching probability:

$$\mathcal{P}_{\mathrm{no},\,a}(t,t') = \mathcal{P}^{\mathrm{PS}}_{\mathrm{no},\,a}(t,t') \, \mathcal{P}^{\mathrm{ME}}_{\mathrm{no},\,a}(t,t')$$

Simple rules so far for each regime:

- Independent evolution according to no-branching probabilities (e.g. by MC-method)
- Veto emissions below/above Q_{cut}

Outline of algorithm

) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$

Outline of algorithm

- (1) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$ /
- ② Translate ME event into shower language: Branching history

Merging algorithm: Branching history

Translate ME event into shower language

Problem: ME only gives final state, no history Solution: Backward-clustering (running the shower reversed)

- Take N-particle final state
- ② Identify most probable splitting (lowest shower measure)
- ④ Repeat 2 and 3 until core process

Most probable branching history a la shower. Now let's use it ...

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history $\sqrt{}$
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_\perp^2)$ for each branching

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history $\sqrt{}$
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$ for each branching \checkmark

④ Start shower evolution:

• Emissions in PS regime?

Merging algorithm: Emissions in PS regime

Interpretation of $\mathcal{P}_{\text{no, }a}^{\text{PS}}(t,t')$

- Vetoed shower below Q_{cut}
- **Truncated** at production and decay scale t', t

Truncated shower

Some splittings are pre-determined by ME

Mismatch of Q and t allows intermediate radiation! \Rightarrow "Truncated" shower necessary to fill phase space below Q_{cut}

- (1) $Q_{\rm cut}$ -vetoed shower between t_1 and t_2
- 2 Then insert pre-determined node t_2
- ③ Restart evolution from there

Outline of algorithm

-) Generate ME event above $Q_{\rm cut}$ according to σ and $d\sigma$
- Translate ME event into shower language: Branching history $\sqrt{}$
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_{\perp}^2)$ for each branching \checkmark

④ Start shower evolution:

- Emissions in PS regime? \Rightarrow Keep
- Emission in ME regime?

Merging algorithm: Emissions in ME regime

Interpretation of $\mathcal{P}_{\text{no, }a}^{\text{ME}}(t,t')$

- Vetoed shower above $Q_{\rm cut}$
- Truncated at production and decay scale t', t

Has to be allowed to preserve full QCD evolution.

Consequences

- Reduction of cross section $\sigma \to \sigma \cdot \mathcal{P}_{\mathrm{no}, a}^{\mathrm{ME}}(t, t')$
- Compensated by higher order ME's

 \Rightarrow Leading order cross section stable

Merging algorithm: Emissions in ME regime

Interpretation of $\mathcal{P}_{no, a}^{\text{ME}}(t, t')$

- Vetoed shower above $Q_{\rm cut}$
- Truncated at production and decay scale t', t

Has to be allowed to preserve full QCD evolution.

Consequences

- Reduction of cross section $\sigma \to \sigma \cdot \mathcal{P}_{\mathrm{no}, a}^{\mathrm{ME}}(t, t')$
- Compensated by higher order ME's

 \Rightarrow Leading order cross section stable

Outline of algorithm

- (1) Generate ME event above Q_{cut} according to σ and $d\sigma$ 🗸
- Translate ME event into shower language: Branching history $\sqrt{}$
- 3 Reweight $\alpha_s(\mu^2) \rightarrow \alpha_s(p_\perp^2)$ for each branching \checkmark
- ④ Start shower evolution: \checkmark
 - Emissions in PS regime? \Rightarrow Keep
 - Image: Section Section In ME regime? ⇒ Reject event

₩

Evolution according to $\mathcal{P}_{no, a}(t, t') = \mathcal{P}_{no, a}^{PS}(t, t') \mathcal{P}_{no, a}^{ME}(t, t')$ preserved Emissions above Q_{cut} ME-corrected

Parton separation criterion

Reminder

 C_i^k

$$\mathcal{K}^{\mathrm{PS}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(z,t) \right] \quad \text{and} \quad \mathcal{K}^{\mathrm{ME}}_{ab}(z,t) = \ \mathcal{K}_{ab}(z,t) \ \Theta \left[Q_{ab}(z,t) - Q_{\mathrm{cut}} \right]$$

- Q_{cut} has to regularise QCD radiation MEs (like a jet resolution)
- Otherwise completely arbitrary until now

$$\begin{split} Q_{ij}^2 &= 2 \, p_i p_j \, \min_{k \neq i,j} \, \frac{2}{C_{i,j}^k + C_{j,i}^k} \\ \text{Final state partons } (ij) \to i, \, j & \text{Initial state parton } a \to (aj) \, j \\ j &= \begin{cases} \frac{p_i p_k}{(p_i + p_k) p_j} - \frac{m_i^2}{2 \, p_i p_j} & \text{if } j = g \\ 1 & \text{else} \end{cases} \text{ with } p_{aj} = p_a - p_j \end{split}$$

- The minimum is over all possible colour partners k of parton (ij)
- Identifies regions of soft ($E_g
 ightarrow 0$) and/or (quasi-)collinear ($pprox k_{\perp}^2
 ightarrow 0$) enhancements
- \circ Similar to jet resolution (e.g. Durham in e^+e^- case), but with flavour information

Is it relevant? Results for $p\bar{p} \rightarrow e^+e^- + \text{jets}$ at $\sqrt{s} = 1960 \,\text{GeV}$ PRL 100,102001 arXiv:0711.3717 [hep-ex]

Algorithm implemented in $\operatorname{S}\operatorname{HERPA}$ framework

CSSHOWER++ Shower based on Catani-Seymour subtraction

COMIX Matrix elements based on Berends-Giele recursion

Is it consistent? Results for $p\bar{p} \rightarrow e^+e^- + \text{jets}$ at $\sqrt{s} = 1960 \text{ GeV}$

Consistency tests

- Total LO cross section stable?
- Observables independent from "unphysical" merging cut?

Workflow to incorporate early Atlas data into UE tune

 $\label{eq:loss} \begin{array}{c} {\sf LO} \; {\sf ME} \oplus {\sf PS} \; {\sf merging} \; {\sf in} \; {\sf Sherpa} \\ {\sf Using} \; {\sf Rivet} \; {\sf to} \; {\sf tune} \; {\sf to} \; {\sf early} \; {\sf ATLAS} \; {\sf data} \end{array}$

Backup

Highest multiplicity treatment

 ${\scriptstyle \circ}$ So far: Rejection of emissions in ME regime \Rightarrow Sudakov weighted MEs

Highest multiplicity treatment

• So far: Rejection of emissions in ME regime \Rightarrow Sudakov weighted MEs

Highest multiplicity treatment

 ${\scriptstyle \circ}\,$ So far: Rejection of emissions in ME regime \Rightarrow Sudakov weighted MEs

Highest multiplicity events

- $N = N_{max}$ emissions from ME \Rightarrow correct branching probability up to scale of last ME emission, t_{min} (global, for all legs)
- ${\circ}\,$ PS must account for all emissions $t < t_{\min},$ even if $Q > Q_{\rm cut}$
- Implemented by employing standard PS evolution beyond last ME emission

↓ Hard radiation respected Remaining phase space filled