QED corrections Weak corrections Summary

EW NLO in Sherpa

J. Archibald

Institute for Particle Physics Phenomenology Durham University

MCnet Meeting, 30th June 2009

EW corrections

QED and weak corrections factorize

- for QED soft collinear divergences cancel between virtual and real corrections
 - use modified Catani-Seymour subtraction to cancel divergences
- for weak corrections, there are no such divergences to cancel, as weak bosons have mass
 - however, unstable massive bosons present their own problems

QED corrections status

- Final state corrections implemented and tested
 - processes such as $u_{\mu}\overline{\nu}_{\mu} \rightarrow e^+e^-$
- Initial state corrections implemented but not tested
 - processes such as $e^+e^- \rightarrow \nu_\mu \overline{\nu}_\mu$

QED corrections Weak corrections Summary

Results for QED corrections to $\nu_{\mu}\overline{\nu}_{\mu} \rightarrow f\overline{f}$

Final	Energy	LO	VI	RS	VIRS	VIRS	Expected
State	(GeV)	(pb)	(pb)	(pb)	(pb)	(%)	VIRS (%)
e ⁺ e ⁻	40	42.40360	0.10475	-0.02618	0.07857	0.18528	0.18535
		± 0.00020	±0.00001	± 0.00005	± 0.00005	± 0.00013	
	50	85.28010	0.21066	-0.05266	0.15800	0.18527	0.18535
		± 0.00040	±0.00011	± 0.00003	± 0.00012	± 0.00014	
иū	40	145.30000	0.15948	-0.03990	0.11958	0.08230	0.08238
		±0.00142	± 0.00008	± 0.00002	± 0.00008	± 0.00007	
	50	292.22000	0.32073	-0.08026	0.24047	0.08229	0.08238
		± 0.00278	± 0.00016	± 0.00004	± 0.00017	± 0.00007	
dd	40	187.15100	0.05137	-0.01286	0.03852	0.02058	0.02059
		± 0.00936	± 0.00003	± 0.00001	± 0.00003	± 0.00001	
	50	376.38800	0.10332	-0.02584	0.07748	0.02059	0.02059
		± 0.01882	± 0.00005	±0.00001	± 0.00005	± 0.00001	

$$\int_{m} \mathrm{d}\sigma_{V} + \int_{m+1} \mathrm{d}\sigma_{R} = \int_{m} \left[\mathrm{d}\sigma_{V} + \int_{1} \mathrm{d}\sigma_{A} \right] + \int_{m+1} \left[\mathrm{d}\sigma_{R} - \mathrm{d}\sigma_{A} \right] \,.$$

QED corrections Weak corrections Summary

Results for QED corrections to $\nu_{\mu}\overline{\nu}_{\mu} \rightarrow f\overline{f}$

Final	Energy	LO	VI	RS	VIRS	VIRS	Expected
State	(GeV)	(pb)	(pb)	(pb)	(pb)	(%)	VIRS (%)
e ⁺ e ⁻	40	42.40360	0.10475	-0.02618	0.07857	0.18528	0.18535
		± 0.00020	±0.00001	± 0.00005	± 0.00005	± 0.00013	
	50	85.28010	0.21066	-0.05266	0.15800	0.18527	0.18535
		± 0.00040	±0.00011	± 0.00003	± 0.00012	± 0.00014	
иū	40	145.30000	0.15948	-0.03990	0.11958	0.08230	0.08238
		±0.00142	± 0.00008	± 0.00002	± 0.00008	± 0.00007	
	50	292.22000	0.32073	-0.08026	0.24047	0.08229	0.08238
		± 0.00278	± 0.00016	± 0.00004	± 0.00017	± 0.00007	
dd	40	187.15100	0.05137	-0.01286	0.03852	0.02058	0.02059
		± 0.00936	± 0.00003	±0.00001	± 0.00003	± 0.00001	
	50	376.38800	0.10332	-0.02584	0.07748	0.02059	0.02059
		±0.01882	± 0.00005	±0.00001	± 0.00005	±0.00001	

$$\int_{m} \mathrm{d}\sigma_{V} + \int_{m+1} \mathrm{d}\sigma_{R} = \int_{m} \left[\mathrm{d}\sigma_{V} + \int_{1} \mathrm{d}\sigma_{A} \right] + \int_{m+1} \left[\mathrm{d}\sigma_{R} - \mathrm{d}\sigma_{A} \right] \,.$$

A massive effect

Weak bosons have mass

• no divergences to cancel between real and virtual terms

However, weak bosons are unstable

- treating them as stable produces $\frac{1}{p^2 M^2}$ poles in physical observables
- to regulate the singularity, perform Dyson summation
 - self energies summed to all orders
 - imaginary part regulates singularity
- But, gauge invariance guaranteed order by order
 - mixing contributions from different orders can break gauge invariance
 - want to find a scheme which will ensure gauge invariance

hep-ph/0005309

Pole scheme

- extract gauge invariant part of self energy summation
- physically observable pole residues are gauge invariant
- awkward to perform for processes with multiple unstable particles
- only valid in region of resonance
- cannot describe threshold effects

Pole scheme with threshold expansion

- combine pole expansion with threshold expansion
- different schemes in different phase space regions
- matching between regions

Gauge invariant non-local effective Lagrangian

for example, complex mass scheme

Complex mass scheme at LO

- masses consistently considered as complex quantities
- complex masses defined as positions of the poles in the complex p² plane of the propagators with momentum p
- complex masses introduced everywhere in the Feynman rules, including definition of weak mixing angle
- gauge invariance preserved
- Ward identities remain valid
- spurious terms introduced
 - $\mathcal{O}(\alpha)$ relative to lowest order term

Complex mass scheme at one-loop

- complex masses introduced directly at Lagrangian level
- split bare masses into complex renormalized masses and complex counterterms
- no change to the theory, only rearrangement of perturbative expansion
- provides O(α) accuracy everywhere in the phase space, provided width is calculated including at least O(α) corrections
- unitarity violated
 - unitarity-violation terms are of higher order ($\mathcal{O}(\alpha^2)$)
 - unitarity violation not enhanced as Ward identities preserved

hep-ph/0505042

Summary

- QED corrections are coming along nicely
- Unstable massive weak gauge boson present their own complications
- Complex mass scheme provides a gauge invariant description of unstable particles valid in the full phase space