A modified CKKW matrix element merging algorithm for angular-ordered parton showers

Jonathan Tully

30/06/2009

MCnet meeting, Lund
work in collaboration with Peter Richardson

A modified CKKW algorithm in Herwig++ based around truncated showers and forced splittings.

- hep-ph/09053072

Introduction

Matrix element merging
CKKW
Modified CKKW method
Powheg restructuring
The algorithm
Clustering
$e^{+} e^{-}$results
Parton level
Hadron level
Drell-Yan implementation

- Merging combines parton showers with exact matrix elements improving descripion of hard jets.
- NLO matching combines (N)LL PS with NLO cross sections ($\mathcal{O}\left(\alpha_{S}\right)$ correction only).
- MC@NLO[5], POWHEG[3]
- Tree level merging combines (N)LL PS with all tree level MEs up to maximum multiplicity.
- CKKW[1, 2], CKKW-L[4], MLM, Pseudo-Shower[7]
- Implementation of a modified CKKW merging algorithm based on POWHEG shower restructuring.
- Aim to avoid worst of problems with merging in angular ordered shower.
- ME merging methods split phase space into two regions: ME + PS
- smooth coverage + no double counting
- define merging scale resolution $y_{M S}$ in some jet measure eg Durham

$$
\begin{equation*}
y_{d u r}=2 \frac{\min \left(E_{1}^{2}, E_{2}^{2}\right)}{s}\left(1-\cos \theta_{1,2}\right) \tag{1}
\end{equation*}
$$

- CKKW replaces approx splitting functions with exact MEs above $y_{M S}$
- CKKW procedure

1. n jet configuration generated $\propto \sigma_{n}\left(y_{M S}\right)$
2. n momenta clustered giving shower history
3. reweight with appropriate Sudakov and α_{S} weights
4. vetoed showers below $y_{M S}$ from history end points.

- A number of issues/difficulties with implementing CKKW
- Scale definition inconsistencies
- Choice of initial shower conditions
- Shower colour structure
- In particular problems when not using a p_{T} ordered shower
- Smooth merging and $y_{M S}$ independence not achieved
- Shower may not produce all radiation
- Discontinuities at partonic level in the jet parameter[8]
- Herwig++ is an angular ordered shower
- Modifications aim to remove the worst of these problems
- Based on POWHEG shower restructuring with truncated showers[3, 10]
- Key element is inverse momentum reconstruction
- Undoes rescaling boosts
- Recursive Sudakov decomposition

momenta + shower history \rightarrow shower variables (\tilde{q}, z, ϕ).
- Shower procedes as single shower with forced splittings and truncated showers
- Fills gaps in shower
- Exact mappings to shower variables
- Unambiguous intitial shower conditions
- Shower colour structure preserved
- POWHEG separates hardest shower emission

- All other emissions vetoed at $p_{\perp h}$
- Results in remnant Sudakov form factor

$$
\begin{equation*}
\Delta_{R}\left(t_{i}, t_{f} ; p_{\perp h}\right)=\exp \left(-\int_{t_{f}}^{t_{i}} \mathrm{~d} z \mathrm{~d} t F(z, t) \Theta\left(k_{\perp}-p_{\perp h}\right)\right) \tag{2}
\end{equation*}
$$

- Probability for no emissions with $k_{\perp}>p_{\perp h}$
- shower \rightarrow truncated shower + hardest emission + vetoed showers
- Generalise to shower line with set of hard emissions (above

- Remnant Sudakovs between hard emissions with fixed $k_{\perp_{M S}}$

$$
\begin{equation*}
\Delta_{R}\left(\tilde{q}_{i}, \tilde{q}_{f} ; k_{\perp_{M S}}\right)=\exp \left(-\int_{\tilde{q}_{f}}^{\tilde{q}_{i}} \mathrm{~d} z \mathrm{~d} \tilde{q} F(z, \tilde{q}) \Theta\left(p_{\perp}-k_{\perp_{M S}}\right)\right) \tag{3}
\end{equation*}
$$

- Sudakov factors built from shower history exactly as in standard CKKW
- with Θ-fn since $\tilde{q} \neq k_{\perp_{\text {MS }}}$
- Multiple truncated showers between hard emissions

1. n-jet configuration generated $\propto \sigma_{n}\left(y_{M S}\right)$ (MadEvent[9])
2. Momenta clustered giving shower history
3. Shower variables to produce shower history calculated

- Defines a set of 'hard emissions'

4. Reweighting with Sudakov and α_{S} weights

- Analytically calculated with exact shower variables

5. Shower begins from clustered $q \bar{q}$ state
6. Truncated showers evolve along each line

- With $k_{\perp_{M S}}$ veto, no flavour changing

7. Hard emissions forced when get to relevant scales

- If there is another hard emission along line go to 7 .

8. Vetoed showers evolve to hadronization scale

- Shower restructuring assumes angular-ordered hard emission history.
- Create all possible histories from allowed branchings resulting in a LO configuration.
- Keep only histories satifying angular-ordering

$$
\begin{equation*}
z_{i} \tilde{q}_{i}>\tilde{q}_{i+1} . \tag{4}
\end{equation*}
$$

- Choose 'most likely' of these histories
- Lowest $\sum\left|p_{\perp}\right|$
- If no angular-ordered histories choose an unordered history.

Introduction
$e^{+} e^{-} \rightarrow$ hadrons with 2 and 3 jets.

(a) $y_{M S}=5 \times 10^{-2}$, (b) $y_{M S}=10^{-2}$, (c) $y_{M S}=5 \times 10^{-3}$, (d) comparison.

Introduction
$e^{+} e^{-} \rightarrow$ hadrons with 2 and 3 jets, no truncated shower.

(a) $y_{M S}=5 \times 10^{-2}$, (b) $y_{M S}=10^{-2}$, (c) $y_{M S}=5 \times 10^{-3}$, (d) comparison.

Introduction
$e^{+} e^{-} \rightarrow$ hadrons with up to 5 jets.

(a) $y_{M S}=5 \times 10^{-2}$, (b) $y_{M S}=10^{-2}$, (c) $y_{M S}=5 \times 10^{-3}$, (d) comparison.

Tune of Herwig++ parameters for to LEP data[13, 14, 15] for CKKW with $y_{M S}=10^{-2}$ in Durham measure.

Red band gives variation
with $y_{M S}=10^{-2}$,
$y_{M S}=5 \times 10^{-3}$ in
Durham and LUCLUS measures.

3 jet resolution

4 and 5 jet resolution

Thrust and oblateness

Oblateness

- Requires merging with initial-state (backwards) parton shower.
- Backwards clustering along initial-state line.
- Initial state inverse momentum reconstruction.
- PDF factors in branching probability.
- Sudakov factors generated dynamically (CKKW-L).
- Required Sudakov weight is probability of no emissions with $k_{\perp}>p_{\perp_{M S}}$ in showering around hard emissions.
- Veto events that generate an event with $k_{\perp}>p_{\perp_{M S}}$ in truncated and vetoed showers.
$Z / \gamma p_{\perp}$ spectrum for CKKW with one extra jet compared to D0 run II data[12].
CKKW $p_{\perp_{M S}}=10 \mathrm{GeV}, 20 \mathrm{GeV}, 30 \mathrm{GeV}$ and $\mathrm{Hw}+\mathrm{ME}$

$W p_{\perp}$ spectrum for CKKW with one extra jet compared to CDF run I data[11].

CKKW $p_{\perp_{M S}}=10 \mathrm{GeV}, 20 \mathrm{GeV}, 30 \mathrm{GeV}$ and $\mathrm{Hw}+\mathrm{ME}$

Summary

- Modified CKKW algorithm implemented in Herwig++
- POWHEG style restructuring with truncated showers
- Exact mappings to shower variables avoiding scale mismatches
- Sensitive partonic plots appear free of discontinuities
- Tuned plots demonstrate improved description of LEP data
- Drell-Yan implementation in progress.
[1] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, "QCD matrix elements + parton showers," JHEP 0111, 063 (2001) [arXiv:hep-ph/0109231].
[2] A. Schalicke and F. Krauss, "Implementing the ME+PS merging algorithm," JHEP 0507, 018 (2005) [arXiv:hep-ph/0503281].
[3] P. Nason, "A new method for combining NLO QCD with shower Monte Carlo algorithms," JHEP 0411, 040 (2004) [arXiv:hep-ph/0409146].
[4] L. Lonnblad, "Combining matrix elements and the dipole cascade model," Acta Phys. Polon. B 33, 3171 (2002).
[5] S. Frixione and B. R. Webber, "Matching NLO QCD computations and parton shower simulations," JHEP 0206, 029 (2002) [arXiv:hep-ph/0204244].
[6] M. Bahr et al., "Herwig++ Physics and Manual," Eur. Phys. J. C 58, 639 (2008) [arXiv:0803.0883 [hep-ph]].
[7] S. Mrenna and P. Richardson, "Matching matrix elements and parton showers with HERWIG and PYTHIA," JHEP 0405, 040 (2004) [arXiv:hep-ph/0312274].
[8] N. Lavesson and L. Lonnblad, "Merging parton showers and matrix elements - back to basics," JHEP 0804, 085 (2008) [arXiv:0712.2966 [hep-ph]].
[9] F. Maltoni and T. Stelzer, "MadEvent: Automatic event generation with MadGraph," JHEP 0302, 027 (2003) [arXiv:hep-ph/0208156].
[10] K. Hamilton, P. Richardson and J. Tully, "A Positive-Weight Next-to-Leading Order Monte Carlo Simulation of Drell-Yan

Vector Boson Production," JHEP 0810, 015 (2008) [arXiv:0806.0290 [hep-ph]].
[11] A. A. Affolder et al. [CDF Collaboration], "The transverse momentum and total cross section of $e^{+} e^{-}$pairs in the Phys. Rev. Lett. 84, 845 (2000) [arXiv:hep-ex/0001021].
[12] V. M. Abazov et al. [D0 Collaboration], "Measurement of the shape of the boson transverse momentum distribution in $p \bar{p} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}+X$ events produced at Phys. Rev. Lett. 100, 102002 (2008) [arXiv:0712.0803 [hep-ex]].
[13] P. Abreu et al. [DELPHI Collaboration], "Tuning and test of fragmentation models based on identified particles and Z. Phys. C 73, 11 (1996).
[14] P. Pfeifenschneider et al. [JADE collaboration and OPAL Collaboration], "QCD analyses and determinations of alpha(s)
in e+ e- annihilation at Eur. Phys. J. C 17, 19 (2000) [arXiv:hep-ex/0001055].
[15] A. Heister et al. [ALEPH Collaboration], "Measurements of the strong coupling constant and the QCD colour factors Eur. Phys. J. C 27, 1 (2003).

