CKKW-L merging of $e^{+} e^{-} \rightarrow$ jets and PhD plans

Stefan Prestel
Theoretical High Energy Physics
Lund University
30.06.09

Introduction

Stefan Prestel

Diploma Thesis: -10/08
NLO corrections to triple W production + leptonic decays

Theoretical High Energy Physics, Lund University

PhD project: 02/09+
CKKW-L merging at NLO for W+jets

Plans

We want to provide a (static) interface between existing fixed order calculations and the parton shower in a standardised way, since

- Fixed order calculations can be tricky, so we'd like to leave these to the experts - we don't want to fool around.
- Parton showers can be tricky, so we'd like to make showering as easy as possible for the fixed order community.

Plan for my PhD:

- A Hello World program: $e^{+} e^{-} \rightarrow$ jets merging.
- Next Step: Move on to $p p \rightarrow W+$ jets merging at LO.
- Then do $p p \rightarrow W+$ jets merging at NLO.

$$
e^{+} e^{-} \rightarrow \text { jets merging }
$$

Steps for N-jet-merging:

- Calculate kinematics for final states $e^{+} e^{-} \rightarrow 2,3, \ldots \mathrm{~N}$ jets with exact matrix elements and store events in a LHE file
- Process the events in Pythia:

1. Find all histories that could have led Pythia to such a final state by reclustering the final jets in all possible ways
2. Choose one history by the product of splitting functions, do a trial shower and veto when an emission has occured between any of the reconstructed splitting scales (= Sudakov reweighting)
3. Reweight with the α_{s} value the shower would have used

$e^{+} e^{-} \rightarrow$ jets merging

Steps for N-jet-merging:

- Calculate kinematics for final states $e^{+} e^{-} \rightarrow 2,3, \ldots N$ jets with exact matrix elements and store events in a LHE file
- Process the events in Pythia
- Do this for all multiplicities.
- Add the output to get distributions.
$e^{+} e^{-} \rightarrow$ jets merging: First results
Three jet distributions can be checked against Pythia, since the first emission is correct there:

Further testing will be done in the next weeks (e.g four jet observables like the Bengtsson-Zerwas angle etc.)

Outlook: $p p \rightarrow W+$ jets merging at NLO

New difficulties compared to $e^{+} e^{-} \rightarrow$ jets:

- "ISR is always more complicated."
- For some events, no ordered (shower-like) histories may exist.

Outlook: $p p \rightarrow W+$ jets merging at NLO

New difficulties compared to $e^{+} e^{-} \rightarrow$ jets:

- "ISR is always more complicated."
- For some events, no ordered (shower-like) histories may exist.

Difficulties at NLO:

- Which regularisation to use?
- Subtract NLO pieces from LO+PS piece.
- Initial state splittings are regarded differently in a PS and in a NLO calculation.

