The CMS Tracker (and a Few Words about Tracking)

J-Term IV August 3, 2009

Outline

- * Tracker Design Philosophy and Goals
- * Overview of CMS Tracker
- Description of Tracker Sub-Detectors
- * Tracker Commissioning with Cosmic Rays
- * Summary

LHC Environment

CMS Parameter	Value
Level-1 trigger rate	100 kHz
Mean time between triggers	10 μsec
Trigger latency	3.2 μ sec
Solenoid field	4 T

Tracker Design Philosophy

Higgs physics, SUSY, W', Z', etc. place constraints on the Tracker design

- Good momentum resolution for leptons from W, Z (W', Z') decays
- Minimizing material for electrons (bremsstrahlung, isolation cuts).
- Lepton isolation to suppress tt and Zbb bkgd for H→ZZ(*) → 4l± modes
- Use isolation criteria to suppress γ - π 0(jet) from H $\rightarrow \gamma \gamma$ decays
 - Minimize material to limit γ conversions
- The ability to tag b-jets
 - Top quark decays
 - Signatures for new physics
- Identifying τ leptons through isolation and displaced vertices.
- Rare states will require very high luminosity
 - 10^{34} cm⁻²s⁻¹ design L \Rightarrow 20-30 superimposed minimum bias events.
 - 25 ns time resolution
 - Resistance to radiation damage

Design Goals

From Tracker TDR

Tracker (only) transverse momentum resolution for muons.

- * High p_T isolated tracks
 - δp_T/p_T ≈ (15pT ⊕ 0.5)% p_T in TeV for |η|≤1.6
 - Gradually degrading to δp_T/p_T ≈ (60p_T ⊕0.5)% for η=2.5
- * Well suited to reconstruction of narrow states decaying into charged particles.
- In combination with the outer muon system
 - $\delta p_T/p_T \approx (4.5\sqrt{p_T})\%$ (p_T in TeV and for p_T>.1 TeV and η extending up to 2 units)
 - Combined system momentum resolution better than in stand alone Tracker.

Design Philosophy

From Tracker TDR - Assumes perfect alignment

- Transverse impact parameter resolution (left)
 - Better than 35 μm over the full |η|≤2.5 range (for p_T > 10 GeV)
- Longitudinal impact parameter resolution (right)
 - Better than 75 μm up to |η| = 1.6

Other Design Goals

* In jet environments charged hadrons with p_T > 10 GeV are reconstructed with efficiency~95%

- 85% for 1 GeV charged tracks
- Better than 98% for muons over full η range (down to p_T ~1 GeV)
- Above 90% for high energy electrons

- * Tagging efficiencies of 50% or better for central rapidity b jets between 50 GeV and 200 GeV E_T
 - Mis-tagging probability 1-2%
 - 40% in forward rapidity region (for same mis-tagging rate)
- * Low rate of photon conversions in Tracker in H→γγ channel
 - Somewhat degraded since original TDR

CMS Solenoid

Figure taken from TDR.

Primary charged particle density at η =0 for 20 minimum bias events (in %) r/cm

4 T magnetic field provided by super-conducting solenoidal magnet.

- Full analyzing power up to $|\eta| \le 1.6$
- A charged particle with $p_T = 1\text{TeV}$ will have a sagitta of 195 μ m.

The high magnetic field affects event topologies (see plot)

- Low momentum tracks confined to small radius helical trajectories.
- Below r=65cm the charged track density falls more slowly with the field on; above 65cm the density falls more rapidly.

 $0 T \Leftrightarrow 1/r^2$

CMS Detector Slice

Muon chambers could be considered to be part of the Tracking System (for muons). For high p_T muons the combined system has a better momentum resolution. However, they are not the topic of this talk.

Tracking Volume

Comparison with other Si Systems

Original slide and data provide by Marcel Demarteau (FNAL)

Summary of Tracking System

Red=Single Blue=Double

Double modules are made up from two single sided modules glued back-to-back

Summary of Tracking System

Pixel Tracker

- Barrel layers at r=4, 7, 11 cm
- Two disks at each end, z=34, 46 cm
- Pixel size ~100μm ×150μm
- 48M pixels in barrel
- 18M pixels in disks

TIB/TOB (Inner Barrel / Outer Barrel)

- * Tracker Inner Barrel (TIB) has four layers
 - Spans roughly 25-52 cm in radius, |z|<65 cm
 - ◆ 80-120 µm pitch
 - Layers 1, 2 contain double modules for stereo measurements

- * Tracker Outer barrel (TOB) has six layers
 - ◆ Spans roughly 60-110 cm in radius, |z|<110 cm
 - 122-183 μm pitch
 - Layers 1, 2 contain double modules for stereo measurements
- * "Double" modules actually are made of two back-to-back axial +stereo modules (referred to as "Double" or "glued") with stereo modules rotated by 100 mrad

TID/TEC (Inner Disk / End Cap)

- * Modules in TID, TEC have trapezoidal geometry
- * TID has 3 disks at each end in z
 - Each disk has 3 rings
 - Spans roughly 25-50 cm in radius, 75-110 cm in |z|
- Rings 1, 2 contain double modules
- * TEC has 9 disks at each end in z, with 7 rings in each disk
 - Rings 1-3 identical with TID rings
 - Rings 1, 2, and 5 double-sided
 - Number of rings per disk decreases with increasing |z|
 - ◆ Innermost disks span 25-110 cm in radius, 120-275 cm in |z|

Summary of Tracking System

Number of Points

Sub-Detector	Channels
Pixels	66 x 10 ⁶
Silicon microstrips	11.4 x 10 ⁶
ECAL crystals	0.076 x 10 ⁶
Preshower strips	0.137 x 10 ⁶
HCAL	0.01 x 10 ⁶
Muon chambers	0.576 x 10 ⁶
TOTAL	78.2 x 10 ⁶

Tracker Occupancy: 1-3%

Few hits on a track, but they are very precise

Comparison of ATLAS/CMS

	ATLAS	CMS	
Tracker Radius	110 cm	115 cm	
Tracker Length	7 m	5.4 m	
Solenoid Field	2T	4T	
	Pixels		
# Barrel Layers	3	3	
Barrel Radii	5.05, 9.85, 12.25	4.4, 7.5, 10.2	
#Fwd Disks	3	2(3)	
Disk Positions	49.5, 56.0, 65.0 cm	35.5, 48.5, 61.5 cm	
	Microstrips		
#Barrel Layers	4	10	
# Disk Layers	9	9	
Radial Span	25-50 cm	20-110 cm	
Measurement points in central region	7 precision + 36 TRT	13 precision	

ATLAS tracker includes straw layers

Material Budget

Tracker Material Budget

Tracker Material Budget

There is a significant amount of material in the Tracker

- More pronounced at higher η
- Major elements include the sensitive elements, electronics, support mechanics, cables, and cooling

Photon Conversions

- * Simulation of conversions in Tracking System material
 - Partly inspired by similar CDF study
 - Physics interest was H→γγ mode
 - Pixel elements are clearly visible and to some extent TIB
 - TOB blurred due to inefficiencies in reconstructing short tracks without any DS detectors (Improved some in recent work)
 - Can be used to study and verify material budget

Reconstructed γ conversions Study by Nancy Marinelli

TIB / TID + at the TIF

TIB + Integrated into TOB + late December 2006

TEC + Arrives at TIF from Aachen

TEC+ Integrated into Tracker Support Tube

TEC+ Integrated into Tracker Support Tube

Forward Pixels

Tracker Installation at P5

Barrel Pixel Installation at P5

Forward Pixel Installation at P5

Final Assembly of Tracker at P5

- * Strip tracker assembled at TIF then collected cosmics from January-July 2007
 - January-July 2007 collected cosmic rays for initial commissioning and alignment
 - December 2007 strip tracker installed at P5

- * Pixel detectors installed just prior to closing of the detector prior in preparation for collisions in fall 2008
 - Barrel pixel installation July 23-24, 2008
 - Forward pixel installation July 29-31, 2008

Tracker Commissioning with Cosmic Rays

- * Strip tracker first commissioned with cosmic rays at TIF from January-July 2007
- * Summer, Fall 2008 recorded several million cosmic tracks at P5 with full tracker (strips and pixels) and with B-field
 - Significant experience gained in operation of tracker
 - Careful studies made of detector performance
 - Performed detailed tests of track reconstruction to commission reconstruction as much as possible prior to collisions
 - Performed first alignment of full tracker

More on analyses in Zijin Guo's talk tomorrow

Tracker Commissioning with Cosmic Rays

Track Reconstruction at CMS

- * Default reconstruction of tracks is performed by the Combinatorial Track Finder (CTF)
- * CTF uses a Kalman-filter approach to build the track by extrapolating the track layer-by-layer, adding compatible hits at each layer, and updating the track parameters
- * Trajectory building stops when no more hits can be added or the trajectory has reached the end of the tracker
 - For collisions, reconstruction goes inside-out, starting (usually) from hits in the pixel layers
 - For cosmics, the CTF was modified to go top-to-bottom, starting from hits in the outer strip layers
 - Other than the position of the seed, software used to reconstruct tracks in cosmics is the same that will be used for collisions

Tracker Commissioning with Cosmic Rays

- * One example of cosmic ray analysis: comparison of track P_T and Muon P_T
 - Momentum measured independently in tracker and muon systems
 - Compare momenta from independent fits

$$R = (1/P_T^{mu} - 1/P_T^{trk}) / (1/P_T^{trk})$$

 Showed magnetic field in muon system was lower than expected

Current Status of Tracker

- * Full tracker was extensively tested in 2008 cosmic ray running
- * During shutdown in early 2009, significant work on cooling for strip tracker, and extraction/repair of forward pixels
 - Work on tracker completed in June
 - Tracker now operating again for several weeks
- * As of last week we are again reconstructing cosmic rays
 - Cosmic run (CRAFT 09) will continue into September
- * Tracker goals for CRAFT 09
 - re-align tracker following pixel work in shutdown
 - commission in mode that will be used for collisions
 - commission final version of reconstruction software

Summary

- * CMS strip and pixels trackers have been assembled, tested, installed at P5, and used to record cosmic rays
 - Detector quality high, and performance excellent
 - Operational fraction close to 100%
- * Reconstructed tracks from cosmic rays have been used to demonstrate tracker performance and to align the tracker with better precision that what was originally expected at startup
- * Tracker will continue to record cosmic rays for final commissioning prior to collisions this year

- * For more information:
 - http://cmsdoc.cern.ch/Tracker/Tracker2005/
- * Join the Tracking Group!

https://twiki.cern.ch/twiki/bin/view/CMS/TrackingPOG

BACKUP

Barrel Pixel Geometry

	barrel 1	barrel 2	barrel 3
radius in mm	41.05 - 46.46	70.16-75.55	98.88-104.26
faces in phi	18	30	42
detector modules/half (1)	128/32	224/32	320/32
readout chips	2304	3840	5376
pixels (100*150)	9.6M	16M	22.4M
readout links	288	480	352

1 barrel ladder = 8 detector modules

2.2 mm gaps in Z

Left and right shells

Forward Pixels

- * 24 blades in each disk
- Blades rotated by 20° for charge sharing (Lorentz angle, track inclination)
- 7 detector modules per blade (4 on front and 3 on back of the blade)
- * 45 read out chips/blade
- Room for another disk @ z=58.5 cm if needed

Microstrip Detectors

- * Single-sided detectors cut from 6" wafers
 - 'Double-sided' achieved by back-to-back stereo and axial modules.
 - Longest strip length: ~2x10 cm
 - Disk modules have trapezoidal shapes
- * Front-end electronics, optical hybrids, fiber optics, FEC, FED, etc common to all 3 sub-systems
- * Shell, disk, barrel, and sector mechanics
- * Beyond the front-end electronics many elements of the readout chain are similar or identical with those in the pixel systems.

TIB/TID (Inner Barrel / Inner Disk)

Layer #	Avg. radius	Modules in phi	Total # of modules	APV / det	Pitch phi	Pitch stereo	Total # of APVs
TIB1	255	26-30	336	6 + 6	80	80	4032
TIB2	340	34-38	432	6 + 6	80	80	5184
TIB3	430	44-46	540	4	120	-	2160
TIB4	520	52-56	648	4	120	-	2592

Ring #	Modules in phi	N of rings in z	Total # of modules	APV / det	P1/P2 phi	P1/P2 stereo	Total # of APVs
TID1	24	6	144	6 + 6	81/112	81/112	1728
TID2	24	6	144	6 + 6	113/143	113/143	1728
TID3	40	6	240	4	123/158	-	960

*Inner barrel has four layers

- 9° tilt to compensate for Lorentz effect
- *TIB1 and TIB2 contain double-sided modules.
- *Support structure in the form of shells with separation at z=0
 - Each half contains 6 detectors in z.
- *TID disks have 3 rings that are identical to inner 3 rings of TEC disks
 - 240 single modules and 288 double modules

TOB (Outer Barrel)

Layer #	Avg. radius	Modules in phi	Total # of modules	APV / det	Pitch phi	Pitch stereo	Total # of APVs
TOB1	608	42	504	4 + 4	183	183	4032
TOB2	692	48	576	4 + 4	183	183	4608
TOB3	780	54	648	4	183	-	2592
TOB4	868	60	720	4	183	-	2880
TOB5	965	66	792	6	122	-	4752
TOB6	1080	74	888	6	122	-	5328

5208 Modules, organized into 688 rods which go into 6 layers on the +/-Z sides of TOB "wheel"

- Layers 1, 2 Stereo
- Overlap in phi, Z
- No tilting for Lorentz effect
- Rods notched at ends to provide overlap at Z=0

TOB Modules

*Tracker Outer Barrel consists of 5208 modules

Two sensors per module

- ~10 cm x 10 cm sensors, 500
 μ thick
- Stereo = 100 mrad tilt angle
- Small non-overlap region

Layers 1,2 are double-sided -- contain back-to-back axial+stereo modules

- "Double", "twin", "back-to-back", "glued"
- 12 modules per DS rod; 6 for SS rods

TEC (End Cap) System

Ring #	Modules in phi	N of rings in z	Total # of modules	APV / det	P1/P2 phi	P1/P2 stereo	Total # of APVs
TEC1	24	6	144	6 + 6	81/112	81/112	1728
TEC2	24	12	288	6 + 6	113/143	113/143	3456
TEC3	40	16	640	4	123/158	-	2560
TEC4	56	18	1008	4	113/139	-	4032
TEC5	40	18	720	6 + 6	126/156	126/156	8640
TEC6	56	18	1008	4	163/205	-	4032
TEC7	80	18	1440	4	140/172	-	5760

*Contains 7 rings

- Rings 1-3 identical with TID rings
- Rings 1, 2, and 5 double-sided
- Number of rings per disk decreases with increasing |z|

Tracker Commissioning at TIF

