

Muon Systems

Muon Systems in CMS

- Why muons?
 - Good signature for interesting/exciting events
 - Higgs $\rightarrow \mu\mu\mu\mu$, $Z \rightarrow \mu\mu$, $W \rightarrow \mu\nu$
 - Muons pass through large amount of material
 - Small cross-section for interactions, brem, etc.
 - Multiple scattering reduces resolution
 - Relatively easy to trigger on
 - Most backgrounds reduced by steel yoke, calorimeter
 - Charged particle \rightarrow easy to measure momentum

Muon System Design

- Atlas
 - Toroidal field to bend muons
 - Complicated geometry for reconstruction
 - Build very high resolution muon wire chambers (50µ)
 - Need very accurate alignment of chambers
 - Keep multiple scattering to a minimum
 - No iron return yoke, small filtering of background
- CMS
 - Solenoidal field to bend muons in ϕ direction
 - Easy geometry for reconstruction (also for strip chambers)
 - Use wire chambers to identify tracks as muons
 - Lower resolution needed (150μ)
 - Measure momentum accurately in Silicon Tracker
 - Tracker resolution about 25μ

CMS Detector

Muon System Layout

CMS muon detectors: Cathode Strip Chambers, Resistive Plate Chambers, Drift Tubes

- Muon detector requirements from the TDR:
- Trigger at high luminosity
- Good muon ID over wide range of momenta and angles
- Improve tracking momentum resolution above 200 GeV/c

n = 1000

n=3.310

CMS Muon Technologies

- Requirement: CMS must have two
 independent muon triggering systems
 - Barrel region Drift Tubes (DT)
 - Forward region -- Cathode Strip chambers (CSC)
 - Both regions -- Resistive Plate chambers (RPC)
- •RPC have very good timing (<3 nsec) but not as good resolution
- DT have good resolution but not as good timing
 CSC have good resolution and acceptable timing

Drift Tube (DT) Chambers

Dick Loveless US CMS "JTerm" IV Aug 2009

DT Design

 T_{max} < 400 ns Efficiency ~ 99% Drift velocity ~ 55 μ m/ns

3 Superlayers per chamber, **2** for Φ coordinate and **1** for θ 0 coordinate.

- Almost linear space-time relationship. 0
- Single wire resolution $\sim 250 \ \mu m$ 0
- Local reconstruction ($r\Phi$) ~ 100 µm

$$\frac{(t_1+t_3)}{2}+t_2=\mathsf{T}_{\mathsf{MAX}}$$

Meantimers recognize tracks - and form vector / quartet.

Dick Loveless US CMS "JTerm" IV Aug 2009

Gas:	: Ar/CO2 (85/15)%		
High	Voltage:	wires strips cathode:	3.6 kV 1.8 kV s -1.2 kV

DT Builders

INFN Bologna, Italy

INFN Torino, Italy

CIEMAT, Spain

RWTH Aachen, Germany

UAM, Spain

DT Read-out System

DT Trigger System

Some nice DT plots.....

Muons from beam-halo

Several beam-halo events have been collected during LHC commissioning.

Dick Loveless US CMS "JTerm" IV Aug 2009

Cathode Strip Chambers

6-layer planar chambers...

Anode wires:

- Wires ganged in groups of 5 -16 for r (θ) coordinate
- Closely-spaced azimuthal anode wires → fast timing

Cathode strips:

- Radial, trapezoidal strips for φ coordinate
- Charge induced on strips → precision measurement in bend direction of magnetic field

CSC Organization

CSC detector supported (almost) entirely by US CMS

- Carnegie Mellon
- Florida
- Fermilab
- Northeastern
- Northwestern
- Ohio State

- Purdue
- Rice
- UC Davis
- UCLA
- UC Riverside
- Wisconsin
- Wayne State

CSC group also includes JINR (Dubna), PNPI (St. Petersburg), IHEP (Beijing)

Scope of the CSC System

•468 CSCs with 4 stations per endcap Shown is 1 station with **54 CSCs** Over 2 million wires •More than 17,000 electronics boards •400,000 readout chan. •9,000 HV channels •5,500 skewclear cables 1400 gigabit optical fibers

CSC Electronics System

Trigger Primitives

Local Charged Tracks (LCT) are formed by comparing hits to patterns...

- Cathode LCT (CLCT) from strips
- Comparator network rapidly determines hits to ¹/₂-strip resolution per layer
- Measures
- Pattern → Radius of curvature ∞ momentum

Anode LCT (ALCT) from wire groups

- Defines trigger timing
- Measures θ, bx
- Pattern → envelope pointing to Interaction Point

The CSC L1 trigger is a fast tracking system

CSC Residuals – ME2/1

position within the strip

With the strip-staggering, the resolution of a chamber can be estimated by

 $1/\sigma^2$ (chamber) = $3/\sigma_1^2 + 3/\sigma_2^2$

 $\rightarrow \sigma$ (ME2/1) = 161µm (c.f. TDR value = $150\mu m$)

100% of CSCs Operational

4 25 May '09 Plots by A. Kubik (Northwestern)

Dick Loveless US CMS "JTerm" IV Aug 2009

Resistive Plate Chambers (RPC)

Developed by R. Santonico (Roma) in the early 80's

Fast chambers, relatively inexpensive (no wires, large strips)

- •Gap: 2 mm
- HV electrodes : 100 µm graphite
- Gas pressure : ~ 1 Atm

Bakelite resistivity 10¹⁰- 10¹² Ωcm Coated with linseed oil

- Gas mixture: 70% Ar, 29% iso-Butane, 1% Freon
- Gas flow: 0.1 vol/hour

RPC Operating Points

The avalanche size depends on the anode distance RPC is not a proportional counter

Different regimes with different HV:

Spark chambershighest HV/cmResistive plate chambersAvalanche chamberslowest HV/cm

Run RPCs in Avalanche Mode

RPCs in Atlas

- Trigger RPCs in muon system
 - Avalanche mode
 - Area: 3650 m²
 - 355,000 channels
 - Efficiency: >95%
 - Time resolution:<3ns
 - Rate capability: 1kHz/cm²

RPCs in Alice

Multigap Timing RPCs are used to identify particles (e/π -, π/K -, K/p- Separation) via time-of-flight (TOF) •Area: 176 m²

•160,000 channels

•Efficiency: >98%

•Time resolution: <70 ps

•Rate Capability: up to 50 Hz/cm²

RPCs in CMS

•Trigger RPCs

- Avalanche mode
- Bakelite
- · 2mm gaps
- $\bullet ~ \text{E} \approx 50 \text{kV/cm}$
- •Gas: Freon + Isobutane
- Time Resolution < 3ns
- Efficiency > 95%
- Rate capability: 1kHz/cm²

RPC System

Barrel: Bari, Frascati, Naples, Pavia, Peking, Sofia

End cap: Bari, , Peking, Seoul, Islamabad

Trigger: Laparanta, Warsaw

Baseline

- Six stations in the Barrel
- Four station in the Endcap up to η = 2.1

G.laselli

However, due to technical and financial reasons, only three layers up to $\eta = 1.6$ in the endcap region are in place at the start up

RPC Dark Currents

CRAFT results (Nov '08)

Barrel dark current/chamber below 1.5 μ A on average. Temperature of the chambers was kept stable at about 22 °C

RPC Efficiencies

Summary

- All Muon systems built, installed, and operational
 - Channel efficiencies typically 99% (or better)
 - CSCs and DTs deliver reliable, efficient triggers
 - Debug other subsystems
- Extensive running on cosmic rays
 - Repair infant mortality, hardware problems
 - Develop more efficient software/firmware
 - DTs uncovered ~30% error in B field map
 - Later speakers will show muon results
- Ready for LHC data!!!!