The LHC: What to Expect When Expecting

David Kaplan Johns Hopkins University

- Electroweak symmetry breaking and electroweak precision data
 Naturalness
- Oark Matter
- (Unification)
- Who Ordered That?'

 Electroweak symmetry breaking and electroweak precision data

Naturalness

Oark Matter

Distance

Weak scale (weak coupling) freeze out

• (Unification)

Naturalness

• 'Who Ordered That?'

- Electroweak symmetry breaking and electroweak precision data
 Naturalness
- Oark Matter
- (Unification)
- Who Ordered That?'

My List - Phenomena

- Higgs, broadly (ewsb)
- New top-quark physics/partners (naturalness)
- Missing E_T (ewp/dm)
- Long-lived particles -- disp. vertices, CHAMPS, out-of-time decays (ew/dm models)
- New Electroweak Bosons (naturalness)
- Weird stuff -- Lepton jets (dm), quirky strings, hidden valleys, unphysics, dragons, ...

Higgs - Collider Bounds

Higgs searches

Non-standard Higgs

New Decays

- Variants on Production
- No Higgs

Standard Higgs Decays

Standard Higgs Decays

Higgs Mass Bound

Higgs Mass Bound

Higgs' Small Width

$$\Gamma_{h \to b\overline{b}} \sim y_b^2$$

mSUGRA (e.g., SPS1a) Higgs sector wants to be modified! 3 $M_{\tilde{t}_i} = 180 \text{ GeV}$ 2 $<H_2> > <H_1>$ M8=150 GeV 1 <H_{1,2}>=0 0 $m_{A}^{2} < 0$ $^{-1}$ $<H_1> > <H_2>$ <**Q**₃>≠0[\] 0.2 0.4 0.6 0.8 0 M^2/μ^2

 m^2/μ^2

but $\Gamma_Z \simeq 1000 \times \Gamma_h(m_h = 115 \text{ GeV})$

Motivated Models

NMSSM (or MSSM $h \rightarrow aa \rightarrow \bar{b}b\bar{b}b$ with a singlet) $h \rightarrow aa \rightarrow \bar{\tau}\tau\bar{\tau}\tau$ $h \rightarrow aa \rightarrow gggg$ $h \rightarrow ss \rightarrow aaaa \rightarrow \bar{b}b\bar{b}b\bar{b}b\bar{b}b\bar{b}b$

New couplings and decays for the Higgs in SUSY can make it naturally heavier and make the LEP bounds weaker.

Motivated Models

Minimal Supersymmetric $h \to \chi^0 \chi^0$ invisible Standard Model (mSUGRA disfavored) $h \to \chi^0 \chi^0 \to q q q q q q$ MSSM w/ or $\rightarrow \ell \ell q q q q$ **R**-parity violation or $\rightarrow \ell \ell \ell \ell \nu \nu$

The Invisible Higgs

Two forward jets							
M _H	110	<i>q</i> ′ 120	130	w,Z 150	200	300	400
(GeV)							
$10 {\rm ~fb^{-1}}$	12.6%	13.0%	13.3%	14.1%	16.3%	22.3%	30.8%
100 fb ⁻¹	4.8%	4.9%	5.1%	5.3%	6.2%	8.5%	11.7%

Eboli, Zeppenfeld (2000)

Eboli, Zeppenfeld (2000)

Hadronic decays

 $\begin{array}{c}
 A \\
 h \\
 h \\
 a \\
 b \\
 \overline{b} \\
 \overline{b}$

P_T cuts help!

Signal: $\sigma \sim 25 {
m pb}$ $5 imes 10^4$ events

Much harder.

Background: $\sigma \sim 0.5 \mu b$ $\sim 500,000 pb$ 10^9 events

Associated production

Naturalness h

Higgs mass at one loop with cutoff:

 $\delta m_h^2 \sim -\frac{3}{8\pi^2} \lambda_t^2 \Lambda^2$

 $\delta m_h^2 \sim \frac{9}{64\pi^2} g^2 \Lambda^2$

 $\delta m_h^2 \sim \frac{1}{16\pi^2} \lambda^2 \Lambda^2$

New states (weak)

New states (strong)

Explicit Examples

Stops often the lightest squark. Composite (KK) gauge bosons strongly coupled to tops

Composite Higgs (RS) scenarios

Tagging Tops $t \rightarrow Wb \begin{cases} I \overline{v} b \\ g \overline{q'} b \end{cases}$

- Find 3 hard objects
- ID b-jet using displaced vertices
- Reconstruct top mass and W mass

...At High Pt

Standard Resonance Search

/+jets

- Cone jets of fixed size
 - Capture variable # of top decay products per jet
 - Lose kinematic info
 - Have to be very careful with the lepton (esp. electrons)
 - Subject to backgrounds you maybe shouldn't be worrying about
- Degraded b-tagging
 - At high Pt, tracks are crowded
 - Fake displaced vertices are a big issue, still under investigation
 - I TeV top: 20% b-tag / ~I% udsg mistag
 - Progressively worse at higher Pt
- Total signal efficiency ~ 1%

B-mistags for high-pT tops

Mission Statement

- We would like some way to look inside these jets and use as much info as possible
- We would also like to free ourselves of reliance on b-tagging

- 3 hard partons
- Mass = m_t
- On-shell W
- ~lsotropic in top frame, comparable energies in lab

- Variable # hard partons
- Continuum of masses
- Soft/collinear singularities

Dijet Mass Spectrum

- All-hadronic tops
- PYTHIA 6.4 continuum QCD and top pair
- Pt > max(500 GeV, m/4)

First Pass: Mass Cut

First Pass: Mass Cut

Dijet Mass Spectrum, Again

1 TeV Top-Jet Gallery

1 TeV Light-Jet Gallery

Our Take on the Problem

- Exploit the excellent calorimeter granularity of CMS and ATLAS to isolate the hard partons at $\Delta R \sim 0.1$
 - If they can be picked out by eye, they can be picked out by a computer program
- Employ both multiplicity and full kinematics as discriminators, as for low Pt
 - But give up on b-tagging
- Give up some conventional notions of what constitutes a "jet"

- 0. Calorimeter cells = massless 4-vectors
 - Calculate distance ΔR_{ij} between all pairs of 4-vectors
 - Stop if all $\Delta R_{ij} > R$, otherwise add together the closest pair and go back to Step I

Our Algorithm, Part I

- I. Cluster event with C/A and look at individual jets
- 2. Decluster jet one step. Throw away softer object if its Pt < $\delta_{\rm D}$ and continue declustering.
- 3. Stop declustering if:
 - **I**. Both objects $Pt > \delta_{p}$. These are **subjets**.
- $\begin{cases} \textbf{2. Both objects Pt < } \delta_p \\ \textbf{3. Objects are "too close": } |\Delta N_{\eta}| + |\Delta N_{\phi}| < \delta_N \\ \textbf{4. Only one object is left} \end{cases}$

declustering fails, rebuild original jet

Our Algorithm, Part II

- 4. If the jet breaks into two subjets, repeat declustering on those subjets
- 5. Keep cases with 3 or 4 final subjets 4th is rare, and tends to be very soft
- 6. Apply kinematic cuts

1 TeV Top-Jet Gallery

1 TeV Light-Jet Gallery

Some 2 TeV Top-Jets

Subjet Rates

Kinematic Cuts

- Top mass
 - Pt < I TeV: m₁₂₃₄ = [145, 205]
 - Pt > I TeV: m₁₂₃₄ = [145, Pt/20+155]
- Best-pairing W mass
 - Pt < I TeV: m_{vv} = [65, 95]
 - $Pt > I TeV: m_W = [65, Pt/40+70]$
- W helicity angle
 - $\cos\theta_h < 0.7$

W Helicity Angle

W rest frame

Final Efficiencies

Final Dijet Mass Spectrum

CMS Collaboration

- Sal Rappoccio, Morris Swartz, Petar Maksimovic
- Working on implementation of algorithm in CMS framework
- Proof of concept: 2 TeV Z', full detector simulation
 - PYTHIA-based physics
 - Decays to light quarks and tops
 - Pt = 0.5~I TeV

Technology Summary

- Bottomline: it still works
- Final efficiencies for t / q (2 TeV Z')
 - Us: 36% / 0.7%
 - Sal: 32% / 1.0%
- Most S/B degradation attributable to energy resolution
- Higher stats / masses in the pipeline
 - How fast do efficiencies fall off?

Future Directions

- ECAL
 - Captures ~10% of jet energy
 - 5x better spatial resolution
- Tracker
 - Sees all charged particles
 - Even better resolution
 - Crowded for individual track ID, but maybe not for tracing Et flow

Semi-leptonic

preliminary - Rehermann, Tweedie

Non-standard Searches

Distinguish from B's

Look at *invariant mass* > 5 GeV of tracks from displaced vertex.

Look for *large multiplicity* of tracks from a single vertex.

At least 5 tracks

Biggest background

Looked for *b* decays on top of other decays.

Simulated gg->bb, gb->bbb, gg->bbbb, gg->bbcc

Expect 10¹² b-pairs per year!!!

Had computing time to simulate 10⁻⁵ years.

Overlapping events

At least 5 tracks

Level 1 Trigger

IP cuts and efficiency

 \times 0.15 mm < b_{IP} < 3.0 mm

 \times 0.07 mm < b_{IP} < 15.0 mm

Dark Matter

Asymmetric DM

The lepton, or B-L asymmetry is transferred to the dark sector in equilibrium

$$X^2 L H_u \qquad \qquad \frac{\Omega_{DM}}{\Omega_b} \sim \frac{m_{DM}}{m_b}$$

DEK, Luty, Zurek '09; see also DB Kaplan '90; Kitano, Low '05

Asymmetric DM

Cosmic Ray Data...

Interpretation: DM annihilation is producing positrons (leptons!)

Arkani-Hamed, Weiner '08

Conclusion

It is hard to model-build these days (emotionally).

Follow principles and signatures.

We are in the middle of a revolution. Work hard and enjoy!

EXTRAS

Showering differences

 $\theta_{ee}(zp\theta^2)^{-1} > (zp\theta)^{-1} \longrightarrow \theta_{ee} > \theta$

Preliminary tests

Here is a simulation of Higgs production and QCD production of two b-jets boosted w.r.t. the lab frame.

Preliminary tests

Here is a simulation of Higgs production and QCD production of two b-jets boosted w.r.t. the lab frame.

Testing ground

And we could get lucky

"Dude, that can't be right."