

Dijet Resonance Search with Dijet Mass

Sertac Ozturk

Cukurova University / LPC

Robert M. Harris Kostas Kousouris Fermilab

Chiyoung Jeong Sung-Won Lee

Texas Tech University

USCMS JTermIV August 5, 2009

Outline

Introduction

Review of dijet resonance search analysis

Limits for qq, qg and gg dijet resonances

Limits including systematic uncertainties

Conclusions

Dijet Resonances

- New particles that decay to dijets
 - Produced in "s-channel"
 - Parton Parton Resonances
 - → Observed as dijet resonances.
 - Many models have small width Γ

Space	q, q , g	q, q, g
	q, q , g	q, \overline{q}, g
		Time

Model Name	Χ	Color	J P	Γ / (2M)	Chan
E ₆ Diquark	D	Triplet	0+	0.004	ud
Excited Quark	q*	Triplet	1/2+	0.02	qg
Axigluon	Α	Octet	1+	0.05	$q\overline{q}$
Coloron	С	Octet	1-	0.05	qq
Octet Technirho	ρ _{Т8}	Octet	1-	0.01	qq,gg
R S Graviton	G	Singlet	2-	0.01	q q ,gg
Heavy W	W'	Singlet	1-	0.01	$q_1\overline{q}_2$
Heavy Z	Ζ'	Singlet	1-	0.01	qq

Review of Dijet Resonance Search

- The machinery of dijet resonance search
 - Fitting of dijet mass "data" with background param + resonances
 - Calculating of likelihood vs. resonance cross section
 - Finding 95% C.L. cross section upper limit and comparing with model cross section for mass limits
 - Limits for quark-quark, quark-gluon and gluon-gluon resonances
 - Systematic uncertainties
- We present an example search with 10 pb⁻¹
 - With pseudo-data that have statistical fluctuation appropriate for 10 pb⁻¹
 - And we have written the "early paper" draft based on this search: CMS AN-2009/070.

Dijet and Resonance Analysis

Dijet Analysis

- Jets from SISCone algorithm with cone size R=0.7
- \rightarrow P_T and η dependent corrections were applied (L2 and L3).
- \rightarrow Two leading jets were required to have $|\eta| < 1.3$
- Dijet mass plots use variable width bins
 - → The bin width is equal to the dijet mass resolution.
- Analyze jet data from unprescaled jet trigger (HLT Jet 110).
- Our resonance shapes comes from PYTHIA + CMS simulation
 - High statistics Fastsim samples of qq, qg and gg resonances
 - → Extracted from the processes G→qq, q*→qg, G→gg.
 - → Agrees with both Winter09 Fastsim and Summer08 Fullsim samples.
 - → Resonance masses of M=0.7, 2, 5 TeV were produced
 - Resonances of intermediate mass values found by interpolation.

Resonance Shapes

- Dijet resonances shapes from qq, qg and gg have small differences.
 - Due to differences in ISR, FSR and CMS jet response as previously discussed.

Pseudo-data and QCD Theory

- We produce pseudo-data from PYTHIA QCD dijets.
 - Stat. fluctuations for 10 pb⁻¹
- The pseudo-data is compared to PYTHIA and NLO QCD
 - Like we will do with real data.
 - Agreement would indicate no evidence of dijet resonances
- We would proceed to set limits

Background Fit and Signal

- Pseudo-data is compared to the background fit and to resonance signals
 - → (data-fit)/fit shows that q* signals with M< 2 TeV could be seen or excluded</p>

Fit Function
$$\frac{p_0 \left(1 - \frac{m}{\sqrt{s}} + \left(\frac{m}{\sqrt{s}}\right)^2 p_3\right)^{p_1}}{m^{p_2}}$$

Limits with Statistical Uncertainties

 To calculate limits on new particles cross sections we use a binned likelihood.

- The signal comes from our dijet resonance shapes for qq, qg and gg
- The background comes from the fit.
- We calculate likelihood as a function of signal cross section for resonances with mass M = 0.7 to 3.5 TeV in 0.1 TeV steps.

Likelihoods with Stat. Error Only (for qg)

From the likelihood we find the 95% CL upper limit on the cross section.

Dijet Resonance Limits with Statistical Uncertainties Only

- 95% CL upper limit compared to cross section for various models.
 - Shown separately for qq, qg and gg resonances.

Total Systematic Uncertainties

- We found the uncertainty in the dijet resonance cross section from following sources
 - Jet Energy Scale (JES)
 - → Uncertainty assumed to be 10% at start-up
 - Choice of background parameterization
 - → We consider 3 functional form used by CDF
 - Luminosity
 - → Uncertainty assumed to be 10% at start-up
- We add in quadrature the individual systematic uncertainties
 - Total systematic uncertainty varies from 45% at m=0.7 TeV to 50% at m=5 TeV

Likelihoods with Systematics (for qg)

- We convolute Poisson likelihoods with Gaussian systematic uncertainties
 - Total likelihood including systematics is broader and gives higher upper limit.

Effect of Systematics on Limit

- Cross section limits increase by about 30%-50% with systematic uncertainties
 - q* mass limits decrease by about 0.1 TeV with systematic uncertainties
 - Similar changes for qq and gg.

Results

- Final limits for qq, qg and gg resonances compared to models.
 - For excited quark, qg resonance was used,
 - → For axigluon, coloron and E₆ diquark, qq resonance was used.

95% C.L. Excluded Mass (TeV)						
	CMS	CDF				
	(10 pb ⁻¹)	(1 fb ⁻¹)				
Excited quark	M<1.8	M<0.87				
Axigluon, Coloron	M<1.8	M<1.25				
E ₆ diquark	M<1.1 , 1.3 <m<1.7< td=""><td>M<0.63</td></m<1.7<>	M<0.63				

Conclusions

- We are ready to search for new physics at the TeV scale using dijets.
- We plan to search separately for qq, qg and gg resonances.
- CMS should be sensitive to excited quarks, axigluon/coloron, and E₆ diquarks up to ~2 TeV at 95% CL with 10 pb⁻¹
- New discoveries are highly possible even in early CMS data.

BACK-UP

Fitting for Resonance Signal

- We fit pseudo-data to the background + q* signal
 - → M(q*)=0.7 3.5 TeV in 0.1 TeV steps
 - Signal cross section found is consistent with zero within errors
 - Background fluctuations at 1 and 2 TeV give positive cross sections with low significance (~2σ).
- No significant evidence of resonances in the pseudo – data sample
 - We proceed to set limits

Jet Energy Systematic

- Systematic uncertainty in jet energy is roughly 10% at startup
 - → We have decreased the mass of the dijet resonance by 10%
 - → Shown here for qg, Similar for qq and gg.
 - This increases the pseudo-data in the region of the resonance, giving a worse limit.
 - Use a smoothed sample of pseudo-data to reduce statistical fluctuations in systematic
 - Systematic uncertainty varies from 45% at m=0.7 TeV to 30% at m=5 TeV

Background Parameterization Systematic

- We have varied the choice of background parameterization
 - A simpler functional form with 3 parameters and another with 4 parameters.
 - → Both functional forms were used by CDF.
 - → We found the 3 parameter form gave the largest change.
 - We smoothed the statistical variations in the absolute change in the limit.
 - → Systematic uncertainty varies from 8% at m=0.7 TeV to 40% at m=5 TeV

