

### Upsilon Production Cross Section Measurement at CMS

3PY the Peking + Princeton + <u>Purdue</u> Upsilon Analysis team

N. Adam, D.Bortoletto, A.Garfinkel, Z.Gecse, S.Guo, V.Halyo, A.Hunt, M.Jones, S.Qian, N.Leonardo, L.Liu, D.Marlow, D.Silvers, I.Shipsey, Z.Hu, J.Werner, Z.Yang, <u>Y.Zheng</u>

8/5/2009

# **Upsilon Analysis Group**

- the three groups had produced three analyses independently
  - AN-2009/066, AN-2009/118, AN-2009/119(+AN-2009/064)
- were invited by the B Physics Analysis Group and Quakonia Task Force conveners to merge
- and produce a reference analysis to become the first Y(nS)→ µ
  µ cross section measurement with early data
- having several groups doing the same analysis independently is a real strength, allowing many cross checks and division of labor
- the groups are working very well together
- and 'naturally' converging in common criteria and results
- paper draft is advancing at good pace
- Completed first attempt at draft 1 (end of July 2009), draft 2 is due end of August 2009.

### Motivation

- Large cross section of Upsilon production allows its measurement in early data at a new energy scale of 10TeV
- Production mechanism of Upsilons is not understood
- **3** LHC with high luminosity and large  $p_T$  Upsilons has the potential to discriminate between the theoretical models
- Upsilons are also used for calibration and alignment of the detector

### Strategy of Y Cross Section Measurement

The differential cross section multiplied by the branching fraction for  $\Upsilon \to \mu^+ \mu^-$  is calculated in each bin of transverse momentum and rapidity using the equation

$$\frac{d^2\sigma}{dp_T dy} \operatorname{Br}(\Upsilon \to \mu^+ \mu^-) = \frac{N_{\operatorname{corrected}}(p_T, y)}{(\int \mathscr{L} dt) \cdot \boldsymbol{\varepsilon}_{\operatorname{rec}} \Delta p_T \Delta y}$$
(1)

- $N_{\text{corrected}}(p_T, y)$  is the corrected yield (see details on next slide)
- $\varepsilon_{rec}$  is the  $\Upsilon \rightarrow \mu^+ \mu^-$  reconstruction efficiency, which contains contributions from those effects that do not depend on the transverse momentum or rapidity of the individual muons.

$$\varepsilon_{\rm rec} = \varepsilon_{\rm hit}^2 \varepsilon_{\rm rad} \varepsilon_{z_0} \varepsilon_{\Delta z} \tag{2}$$

- $\varepsilon_{rad}$ : inefficiency due to events migrating out of the  $\Upsilon$  peak due to internal final state radiation in the  $\Upsilon$  decay
- $\bullet$   $\varepsilon_{z_0}$ : efficiency of the restriction on the position of the primary vertex along the z axis
- $\varepsilon_{\Delta z}$ : efficiency with which the two muons satisfy the requirement on  $\Delta z$ .
- $full \int Ldt$  is the integrated luminosity.
- $\Delta p_T$  and  $\Delta y$  are the transverse momentum and rapidity bin widths, respectively.

ready, still in study

8/5/2009

### How to Extract Corrected Yield ( $N_{corrected}$ )

 $N_{\text{corrected}}(p_T, y)$  is determined by fitting the  $\mu^+\mu^-$  invariant mass distribution that is obtained by weighting individual events by  $p_T$  and rapidity-dependent factors:

$$N_{\text{corrected}}(p_T, y) = \sum_{i=1}^{N_s} \frac{1}{w_i}$$
  
$$w_i = \varepsilon_{\text{HLT}_Mu3} \varepsilon_{\text{Id}}(p_T^{\mu^+}, \eta^{\mu^+}) \varepsilon_{\text{Id}}(p_T^{\mu^-}, \eta^{\mu^-}) \mathscr{A}(p_T^{\Upsilon}, y^{\Upsilon}, \alpha).$$



*E*<sub>HLT\_Mu3</sub>: efficiency with which the event is selected by the HLT\_Mu3 trigger

$$\begin{split} \boldsymbol{\varepsilon}_{\mathrm{HLT\_Mu3}} &= \boldsymbol{\varepsilon}_{\mathrm{HLT\_Mu3}}(p_T^{\mu^+}, \boldsymbol{\eta}^{\mu^+}) + \boldsymbol{\varepsilon}_{\mathrm{HLT\_Mu3}}(p_T^{\mu^-}, \boldsymbol{\eta}^{\mu^-}) - \\ & \boldsymbol{\varepsilon}_{\mathrm{HLT\_Mu3}}(p_T^{\mu^+}, \boldsymbol{\eta}^{\mu^+}) \cdot \boldsymbol{\varepsilon}_{\mathrm{HLT\_Mu3}}(p_T^{\mu^-}, \boldsymbol{\eta}^{\mu^-}) \end{split}$$

•  $\mathscr{A}(p_T, y, \alpha)$  is defined as the detector acceptance: (in backup slides)

$$\mathscr{A}(p_T, y, \alpha) = \frac{N_{\text{rec}}(p_T, y)}{N_{\text{gen}}(p'_T, y', \alpha)}$$

### **Event Selection**

- Offline Selection Cuts
  - Low Pt Muon ID:
    - muon  $p_T$  > 3.0 GeV
    - muon |eta| < 2.1
    - number of valid silicon track hits > 10
    - silicon track chi2/ndof < 5</li>
    - |d0|<0.5cm, |Z0|<25cm, |Dz0|<2cm
    - pass the TMOneStationTight Muon Id algorithm
  - $\Upsilon(nS)$  Selection
    - event passes the single muon HLT with  $p_T$  > 3GeV
    - both muons pass low  $p_T$  muon ID criteria
    - both muons with opposite charge
    - upsilon mass: 8-12 GeV

Z.Gecse, N.Adam, A.Hunt

## Calculating Efficiencies( $\epsilon_{HLT_Mu3}$ , $\epsilon_{Id}$ )

- We use Tag and Probe(TnP), a data driven method, to determine efficiencies from physics processes.
  - one of the muons is defined as "Tag" using tight identification criteria
  - the other muon, referred to as a "Probe", is used to measure the efficiency.

|               | Muon-Id                        | Trigger                        |  |  |
|---------------|--------------------------------|--------------------------------|--|--|
|               |                                |                                |  |  |
| Tag           | Muon-id                        | Muon-id                        |  |  |
|               | Matched to HLT_Mu3             | Matched to HLT_Mu3             |  |  |
|               | $p_{\rm T} > 3.0  {\rm GeV}/c$ | $p_{\rm T} > 3.0 {\rm GeV}/c$  |  |  |
|               | $ \eta  < 2.1$                 | $ \eta  < 2.1$                 |  |  |
|               |                                |                                |  |  |
| Probe         | General-track                  | Muon-id                        |  |  |
|               | $p_{\rm T} > 3.0  {\rm GeV}/c$ | $p_{\rm T} > 3.0  {\rm GeV}/c$ |  |  |
|               | $ \eta  < 2.1$                 | $ \eta  < 2.1$                 |  |  |
|               |                                |                                |  |  |
| Passing-Probe | Muon-id                        | Matched to HLT_Mu3             |  |  |
|               |                                |                                |  |  |

### TnP Muon-Id & Trigger Efficiency

TnP probe binning

pt (4 bins): 3.0-4.5, 4.5-6.0, 6.0-8.0, 8.0-infty

eta (4 bins): -2.1--1.2, -1.2-0.0, 0.0-1.2, 1.2-2.1

Detailed comparison of tag and probe efficiency results by two independent analysis (Purdue/Princeton)

- observe rather good agreement
- slightly different criteria for tag-probe pair selection
- plan to take (small ) difference as the systematic uncertainty associated with tag and probe algorithm implementation



### Cross Section Measurement (1)

Corrected Yield with 1pb<sup>-1</sup> sample(N<sub>corrected</sub>)



(a) Unweighted yield



(b) Yield after per event weighting

#### From CMS AN-2009/118 by Purdue, 3PY final results in preparation

### Cross Section Measurement (2)

#### Sources of Systematic Uncertainty

- Luminosity: determined by the CMS luminosity monitoring group.
- Statistical uncertainties: assessed by varying the weights used in the mass fit coherently by  $\pm 1\sigma$  (stat.)
- Tag and Probe bias: the deviation between the fitted and the MC matching results measured in 15 pb<sup>-1</sup> sample
- binning in efficiency: determined by varing the bin size and repeating the measurement

|  | — | Polarizati | on and ch | oice of pd | f: from CMS | S-AN 2009-066 |
|--|---|------------|-----------|------------|-------------|---------------|
|--|---|------------|-----------|------------|-------------|---------------|

| Source             | Reference   | Υ(1S) | Ύ(2S) | $\Upsilon(3S)$ |
|--------------------|-------------|-------|-------|----------------|
| Luminosity         | [16]        | 10%   | 10%   | 10%            |
| Acc. and Eff.      | AN-2009/118 | 4.7%  | 3.7%  | 3.5%           |
| Tag and Probe bias | AN-2009/118 | 4.1%  | 3.9%  | 3.1%           |
| Polarization       | AN-2009/066 | 1.5%  | 1.4%  | 0.7%           |
| Choice of pdf      | AN-2009/066 | 4.1%  | 4.1%  | 3.2%           |

Table from CMS AN-2009/118 by Purdue, 3PY final results in preparation

# Cross Section Measurement (3)

### • Validation using large MC samples 15 pb<sup>-1</sup>

12

Measurement of the differential Upsilon(1S) production cross section using the Tag and probe technique in 15 pb<sup>-1</sup> sample

From CMS AN-2009/118 by Purdue, 3PY final results in preparation

(b)  $\Upsilon(2S)$  differential cross section.



BR(Y(2S)→μμ) [nb/GeV]

0.6

0.2

. ≸€ 0.4

#### Upsilon(1S) Differential X-section with 1pb-1 sample



From CMS AN-2009/118 by Purdue, 3PY final results in preparation

Results for Y(2s), Y(3s) in backup slides

| $p_T^{\Upsilon}$ | cross-section | statistical  | systematic uncertainty |          |          | other         | total       |
|------------------|---------------|--------------|------------------------|----------|----------|---------------|-------------|
| (GeV)            | (nb)          | uncertainty  | acc. & effic.          | t&p bias | combined | syst. sources | uncertainty |
| 0 - 2            | 3.112         | 0.255 (8.2%) | +0.116 / -0.128        | 0.174    | 6.9%     | 10.9%         | 15.3%       |
| 2-4              | 6.092         | 0.222 (3.6%) | +0.224 / -0.248        | 0.306    | 6.5%     | 11.5%         | 13.7%       |
| 4 - 6            | 4.791         | 0.213 (4.4%) | +0.200 / -0.224        | 0.207    | 6.4%     | 11.3%         | 13.7%       |
| 6-9              | 3.679         | 0.173 (4.7%) | +0.181 / -0.208        | 0.124    | 6.6%     | 10.1%         | 12.9%       |
| 9 - 14           | 2.075         | 0.094 (4.5%) | +0.094 / -0.111        | 0.039    | 5.7%     | 10.8%         | 13.0%       |
| > 14             | 0.969         | 0.063 (6.6%) | +0.051 / -0.064        | 0.004    | 6.6%     | 12.7%         | 15.7%       |
| $0-\infty$       | 20.737        | 0.607 (2.9%) | +0.867 / -0.982        | 0.855    | 6.3%     | 11.0%         | 13.0%       |

8/5/2009

### Results with 1pb<sup>-1</sup> sample

 From the weighted fit the integrated Upsilon(nS) production cross section is determined to be

$$\begin{aligned} \sigma_{\Upsilon(1S)} &= (20.74 \pm 0.61^{+2.59}_{-2.63}) \text{ nb}, \\ \sigma_{\Upsilon(2S)} &= (8.78 \pm 0.30^{+1.05}_{-1.06}) \text{ nb}, \\ \sigma_{\Upsilon(3S)} &= (2.18 \pm 0.30^{+0.24}_{-0.24}) \text{ nb}, \end{aligned}$$

with a total precision of 13%, 13%, 18%, which are in good agreements with the generator level values: 19.37  $\pm$  0.02, 8.51  $\pm$  0.02, and 2.35  $\pm$  0.01 (nb), respectively for Y(1S), Y(2S), and Y(3S).

From CMS AN-2009/118 by Purdue, 3PY final results in preparation

### Summary

- We studies the feasibility of the Upsilon cross section measurement:
  - TnP study of Muon-Id and trigger efficiencies
  - Cross section calculation with per-event weighting
  - Unbinned maximum likelihood fit of invariant mass with double Gaussians and linear background
  - Systematics due to statistical uncertainties and binning of efficiencies
  - validated in 15/pb, demonstrated in 1/pb sample
  - Completed Draft 1 (reference BPH-09-003)
- Next step:
  - Rerun all the analysis with common criteria.
  - Systematics study due to polarization and other sources.
  - Many cross checks within the whole group.
  - Completing draft 2 by the end of August.

### **BACK UP**

8/5/2009

### Acceptance and Polarization(A( $p_T$ , y, $\alpha$ ))

- Currently the acceptance is computed assuming no net polarization of the Y.
- proposal for estimating systematic effect due to the unknownY polarization (P.Faccioli, C.Lourenco et al)
  - calculate acceptance as function of polar and azimuthal angles in two different frames
    S.Guo, Z.Hu
  - choose frame with largest variation in acceptance
  - evaluate systematic uncertainty by extreme polarizationhypothesis



#### Upsilon(2S) Differential X-section with 1pb-1 sample



| $p_T^{\Upsilon}$ | cross-section | statistical   | systematic uncertainty |          |          | other         | total       |
|------------------|---------------|---------------|------------------------|----------|----------|---------------|-------------|
| (GeV)            | (nb)          | uncertainty   | acc. & effic.          | t&p bias | combined | syst. sources | uncertainty |
| 0-2              | 1.529         | 0.135 (8.8%)  | +0.042 / -0.046        | 0.080    | 6.1%     | 10.9%         | 15.3%       |
| 2-4              | 2.905         | 0.135 (4.7%)  | +0.077 / -0.086        | 0.125    | 5.2%     | 11.5%         | 13.5%       |
| 4 - 6            | 1.943         | 0.123 (6.3%)  | +0.061 / -0.068        | 0.075    | 5.2%     | 11.3%         | 13.9%       |
| 6-9              | 1.386         | 0.097 (7.0%)  | +0.053 / -0.060        | 0.046    | 5.4%     | 10.1%         | 13.4%       |
| 9 - 14           | 0.743         | 0.056 (7.5%)  | +0.035 / -0.041        | 0.013    | 5.8%     | 10.8%         | 14.4%       |
| > 14             | 0.310         | 0.034 (11.0%) | +0.018 / -0.023        | 0.001    | 7.4%     | 12.7%         | 18.4%       |
| $0-\infty$       | 8.779         | 0.301 (3.4%)  | +0.286 / -0.324        | 0.341    | 5.4%     | 10.9%         | 12.6%       |

8/5/2009

#### Upsilon(3S) Differential X-section with 1pb-1 sample



| $p_T^{\Upsilon}$ | cross-section | statistical   | systematic uncertainty |          |          | other         | total       |
|------------------|---------------|---------------|------------------------|----------|----------|---------------|-------------|
| (GeV)            | (nb)          | uncertainty   | acc. & effic.          | t&p bias | combined | syst. sources | uncertainty |
| 0-2              | 0.265         | 0.123 (46.2%) | +0.008 / -0.008        | 0.011    | 5.4%     | 10.9%         | 47.8%       |
| 2 - 4            | 0.519         | 0.155 (29.9%) | +0.015 / -0.017        | 0.020    | 5.0%     | 11.5%         | 32.5%       |
| 4 - 6            | 0.347         | 0.155 (44.7%) | +0.010 / -0.011        | 0.017    | 5.8%     | 11.3%         | 46.5%       |
| 6 - 9            | 0.440         | 0.127 (28.8%) | +0.015 / -0.017        | 0.013    | 4.9%     | 10.1%         | 30.9%       |
| 9 - 14           | 0.369         | 0.076 (20.6%) | +0.013 / -0.015        | 0.006    | 4.3%     | 10.8%         | 23.6%       |
| > 14             | 0.214         | 0.048 (22.4%) | +0.008 / -0.009        | 0.001    | 4.4%     | 12.7%         | 26.1%       |
| $0-\infty$       | 2.177         | 0.304 (14.0%) | +0.067 / -0.076        | 0.067    | 4.7%     | 10.2%         | 17.9%       |

8/5/2009