

Measurement of the Muon Charge Asymmetry in the pp→W(µv)+X Process

Ping Tan

Fermi National Accelerator Laboratory

JTERM IV, Aug 3-5, 2009

<u>Outline</u>

- ♦ Physics motivation
- ♦ Measurement of the Muon Charge Asymmetry

Approved by CMS, EWK-PAS-09-003

Probing the PDFs at LHC

$$\frac{d \ \sigma}{d \ variable}[pp \to X] \sim \sum_{ij} \ \left(f_{i/p}(x_1)f_{j/p}(x_2) + (i \leftrightarrow j)\right) \ \hat{\sigma} \\ \text{LHC parton kinematics}$$

- ♦ W/Z cross sections at LHC are at 10s-100s nb.
- ◆ LHC offers unique opportunity to probe Parton Distribution Functions (PDFs), kinematics, sea quarks, etc. x ∈10⁻² ~10⁻³ (central W/Zs)
- ◆ Test higher-order theoretical calculations with W/Z rapidity distributions.

Ping Tan, PDF4LHC 2009

Lepton Charge Asymmetry

♦ W boson production can directly probe valence-sea quark ratio at LHC.

$$A_{w} \approx \frac{u\overline{d} - \overline{u}d}{u\overline{d} + \overline{u}d} \approx \frac{u_{val} - d_{val}}{u_{val} + d_{val} + 2\overline{q}}$$

♦ However, only the leptons can be accessible directly, ~3.5% theoretical precision (CTEQ66).

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}.$$

- W V-A asymmetry dilutes the expected W asymmetry.
- ◆ Acceptance can differ from unity by about 10% when experimental cuts on lepton p^T or MET are applied.

Trigger & Event Selections

- ◆ A single muon trigger with p_T > 15 GeV.
- ♦ Exactly one muon candidate within full detector coverage(|η|<2.4) per event
 - ❖ Associated silicon track hits >=12
 - ❖ Silicon track normalized χ² < 5</p>
 - ❖ Muon p_T > 10 GeV.
- → Match muon candidate with trigger object.
- ♦ Muon p_T + Iso > 25 GeV, $Iso = \sum E_T$
- → Isolation z < 0.05 (reduce QCD background)</p>

$$z=1-\frac{p_T}{p_T+Iso}.$$

◆ MET > 20 GeV

Signal efficiency is 53.4% (μ^+) and 60.6%(μ^-) (normalized to generated signal events within $|\eta|$ <2.1)

Expected Signal Yields

	Luminosity	$W^+ \rightarrow \mu^+ \nu$		$W^- \rightarrow \mu^- \nu$	
MC Type	(pb^{-1})	Events/pb	Relative frac. (%)	Events/pb	Relative frac. (%)
$W \rightarrow \mu \nu$	133.1	2294.3±4.2	91.9±0.2	1623.2 ± 3.5	89.8±0.2
$W \rightarrow \tau \nu$	91.8	43.1 ± 0.7	1.70 ± 0.03	32.9 ± 0.6	1.80 ± 0.03
$t\bar{t}$	75.4	9.9 ± 0.4	0.40 ± 0.02	10.1 ± 0.4	0.61 ± 0.02
Drell-Yan	666.8	89.4 ± 0.4	3.60 ± 0.02	81.6 ± 0.4	4.50 ± 0.02
QCD	51.6	60 ± 1.0	2.40 ± 0.04	60 ± 1.0	3.30 ± 0.06

- ◆ Drell-Yan background dominates (~4%).
- ◆ QCD dijet background is at 2-3% level, large uncertainty in MC predictions.
- ◆ Overall S/B ~ 10. (Using LO cross sections)

$$m_T = \sqrt{2 \cdot p_T \cdot MET \cdot (1 - cos(\Delta \phi))}.$$

QCD Background Subtraction

- → Relying on MC to estimate electro-weak background (Drell-Yan, W(TV), ttbar). (NLO, NNLO effects)
- ◆ Data-driven method to subtract the rest of the QCD background (reduce systematic error).

~1% systematic uncertainty on signal yield (3% QCD background)

Rapidity Shape of QCD Background

- Use sideband (A) to predict rapidity distribution of QCD background in signal region (C).
- Checked over MC: agreement is within sample statistics.

Ping Tan, PDF4LHC 2009

Charge Asymmetry at 100 pb⁻¹

Theoretically preferred charge asymmetry,

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}.$$

→ Relate experimental observable, number of events, to above asymmetry: experimental inefficiencies, acceptances, etc.

$$A(\eta) = \frac{\frac{dN^{+}}{d\eta} - \frac{dN^{-}}{d\eta} \cdot \frac{\epsilon_{HIT}^{+} \cdot \epsilon_{offline}^{+} \cdot \epsilon_{acceptance}^{+}}{\epsilon_{HIT}^{-} \cdot \epsilon_{offline}^{+} \cdot \epsilon_{acceptance}^{+}}}{\frac{dN^{+}}{d\eta} + \frac{dN^{-}}{d\eta} \cdot \frac{\epsilon_{HIT}^{+} \cdot \epsilon_{offline}^{+} \cdot \epsilon_{acceptance}^{+}}{\epsilon_{HIT}^{-} \cdot \epsilon_{offline}^{+} \cdot \epsilon_{acceptance}^{+}}}$$

◆ Symmetric detector: trigger/offline efficiency ratios are 1. Acceptance differs from unity.

$$A(\eta)_{obs} = \frac{\frac{dN^{+}}{d\eta} - \frac{dN^{-}}{d\eta}}{\frac{dN^{+}}{d\eta} + \frac{dN^{-}}{d\eta}} = \frac{d\sigma^{+}/d\eta - (\frac{\epsilon_{acceptance}}{\epsilon_{acceptance}^{+}}) \cdot d\sigma^{-}/d\eta}{d\sigma^{+}/d\eta + (\frac{\epsilon_{acceptance}}{\epsilon_{acceptance}^{+}}) \cdot d\sigma^{-}/d\eta}.$$

Experimental observable

Theoretical prediction

Charge Asymmetry at 100 pb⁻¹

- ◆ Statistical errors: 0.004-0.006.
- Systematic error is dominated by the error on the offline and trigger efficiency ratio between μ⁺ and μ⁻. (assumed to be determined at 1.3% level with 100 pb⁻¹ of

→ Could provide constraints to different PDF models.

integrated luminosity)

