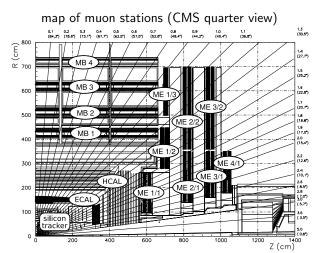


Muon Tracking and Alignment

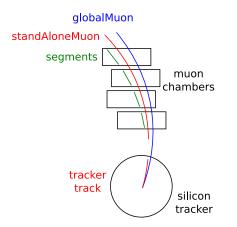
Jim Pivarski

Texas A&M University

4 August, 2009

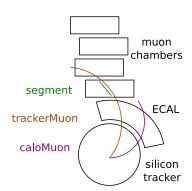

Muon tracking

Jim Pivarski 2/24



- ➤ You just heard about tracking in the silicon tracker; now extend that to the muon system
- Modular tracking environment: tracking in self-contained chambers

- ▶ Inside of each chamber are 6–12 detector layers sensitive to the positions of passing muons (100–300 μ m)
- ► Each can measure the position and direction of local tangents to the muon's trajectory called segments



- Connect segments into a continuous track called a standAloneMuon (used especially in HLT trigger)
- ► Match to closest tracker track to form a globalMuon

Muon tracking

Other reconstruction methods

- ► trackerMuon: starting from a tracker track, find at least one matching segment (traditional method for experiments with smaller muon systems)
- caloMuon: match tracker track to a calorimeter shower consistent with a minimum-ionizing particle
- Purpose: high efficiency across the whole momentum range (low- p_T tracks curl in the \vec{B} field, less likely to form standAloneMuon)
- As always, there's a trade-off between efficiency and background rejection
- User can select from different reconstruction algorithms

Efficiency

(high 90%'s above 10 GeV)

- ▶ L1 trigger
- ► HLT reco and cuts
- offline track seeding
- analysis cuts

Background rejection

(depends on specific analysis)

- $\pi \to \mu\nu$ decays in flight (so-called "fake muons")
- misidentification, punch-through (actual fake muons are rare)

Resolution

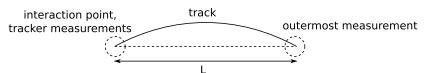
(focus of this talk)

- ightharpoonup measuring p_T
- B
 -field outside solenoid
- TeV muon showers
- scattering
- chamber alignment

Also relevant for resolution, but not covered in this talk

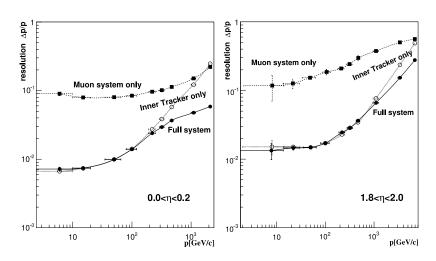
- intrinsic hit resolution
- calibration
- layer alignment
- reconstruction algorithms for TeV muon showers

Resolution

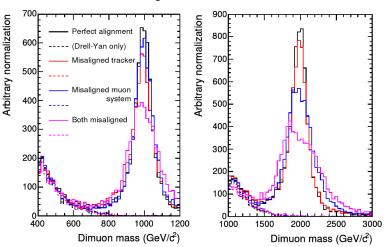

Jim Pivarski

Accuracy of reconstruction track parameters at the interaction point

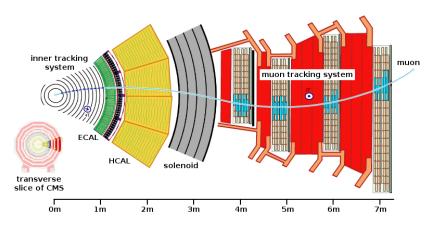
ecuracy of reconstruction track parameters at the interaction point		
$\begin{pmatrix} d_{xy} \\ d_z \end{pmatrix}$	point of closest approach	dominated by pixel measurements
$\left. egin{array}{c} \phi \ \lambda, \ heta, \ { m or} \ \eta \end{array} ight\}$	direction of muon's initial momentum	dominated by strip tracker
$\frac{q}{p_T}$	signed curvature; magni- tude of muon's initial mo- mentum	dominated by tracker up to 200 GeV (barrel), 500 GeV (endcap); above that, both are important


- ▶ Direction (ϕ, θ) resolution \sim (hit resolution)/L
- ▶ p_T resolution \sim (hit resolution)/ $\left(\frac{L}{2}\right)^2$

(from the TDR)


Resolution

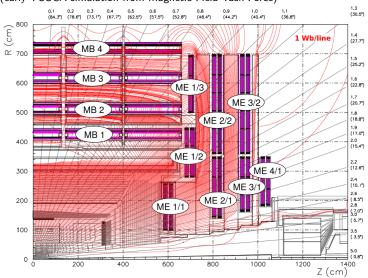
Jim Pivarski


Z' reconstructed with misaligned tracker elements and muon chambers

Misaligning the muon system (blue) has a greater effect at higher momenta/Z' masses

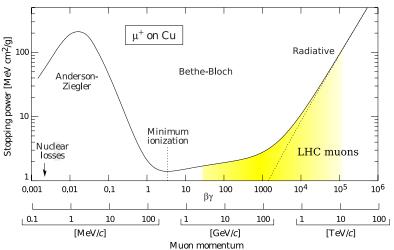
▶ Further complicated by the fact that muon tracks are not helices

inside the solenoid


outside (field is reversed)

Jim Pivarski 10/24

(early TOSCA simulation from Magnetic Field Task Force)

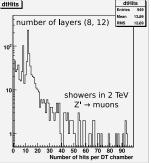


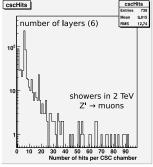
► Field lines try to follow iron return yoke: $\vec{B}(\vec{x}) \approx 0$ in most chambers

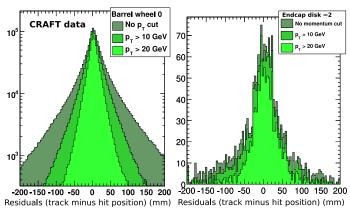
Average energy loss: $\langle dE/dx \rangle$ Jim Pivarski

11/24

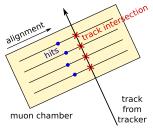

Highest-energy muons from LHC collisions will have qualitatively different behavior in material: TeV muon showers


TeV muon showers


Jim Pivarski 12/24


Low- p_T scattering

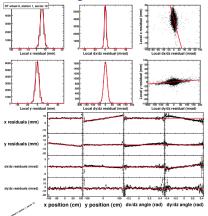
Jim Pivarski 13/24

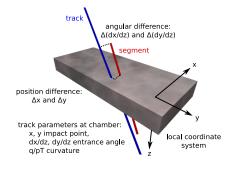

- ▶ In the minimum-ionizing regime, track-by-track energy loss can be non-negligible compared to energy
- Limit of many soft interactions ("multiple scattering") → Gaussian
- Single hard scattering has power-law tails
- Real distribution is a convolution of both, highly dependent on energy

- 1. Select globalMuons
- 2. Re-fit them to the tracker only
- 3. Propagate to the muon system
- Convert peak of residuals distribution (track intersections minus hit positions) into alignment corrections

Matches muon chamber positions to tracks given by the tracker

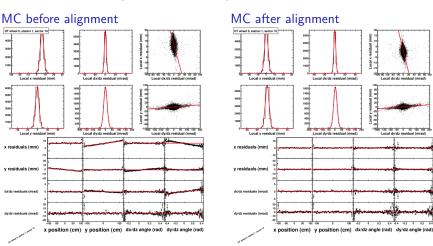
Motivation


- Decouples track-fitting from alignment
- ▶ Tracker dominates resolution for most ($p_T \ll 200 \text{ GeV}$) tracks anyway
- Peak of residuals distribution is where minimally scattered tracks agree on chamber position; highly-scattered tracks disagree in different ways (possibly asymmetric tails)

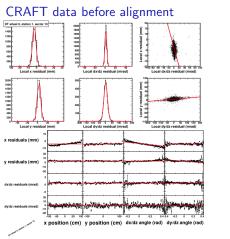


- ▶ Model misalignment effects and propagation effects in a single ansatz, fit with Minuit
- 4-D residuals (position and angle) → 6 rigid body degrees of freedom

MC before alignment

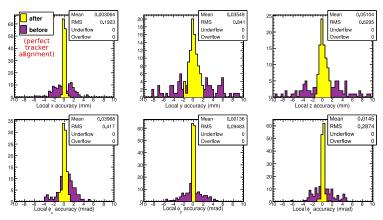


- ▶ Model misalignment effects and propagation effects in a single ansatz, fit with Minuit
- 4-D residuals (position and angle) → 6 rigid body degrees of freedom



Sample alignment fits

Jim Pivarski 17/24


- ► Model misalignment effects and propagation effects in a single ansatz, fit with Minuit
- ightharpoonup 4-D residuals (position and angle) ightharpoonup 6 rigid body degrees of freedom

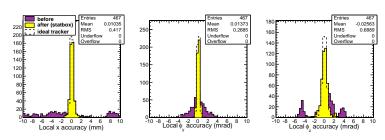
CRAFT data after alignment Local x residual (mm) Local dx/dz residual (mrad) Local dx/dz residual (mrad x residuals (mm) y residuals (mm)

- lacktriangle MC simulation of CRAFT alignment (DT wheels -1, 0, +1)
- ▶ Everything is the same as real-data alignment except
 - perfect tracker alignment, magnetic field, internal DT alignment (to test chamber alignment procedure only)
- ightharpoonup Final x misalignment is $\mathcal{O}(100\text{--}300~\mu\text{m})$, like hit resolution

CRAFT data alignment results Jim Pivarski 19/24

- ▶ High-level test: split each cosmic ray into two LHC-like halves, fit top and bottom independently
 - \triangleright any mismatch in $1/p_T$ is purely instrumental
 - ▶ select $p_T \gtrsim 200$ GeV to emphasize contribution of the muon alignment (long lever arm for resolution of small sagitta)

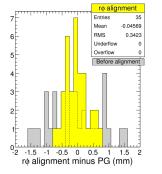
Design Report (no misalignment) 0.0<n<0.2

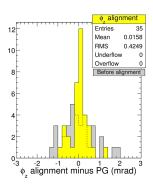

Plot from Technical

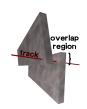
sigma ~ 0.025 at 200 GeV for a perfect detector

200 GeV n[GeV/c]

- ► Cosmic rays for alignment and diagnostics are mostly vertical: incomplete coverage in endcaps from cosmic rays (many chambers have zero hits)
- No such problem with collisions muons Simulated alignment using 50 pb $^{-1}$ $pp \rightarrow \mu X$, same technique:

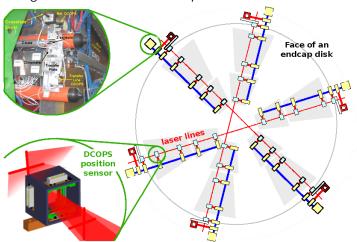



- ► M. Schmitt and J. Pivarski are working on methods to align endcap chambers with cosmic rays
- Beam-halo results (next page) demonstrate understanding of detector issues in real data



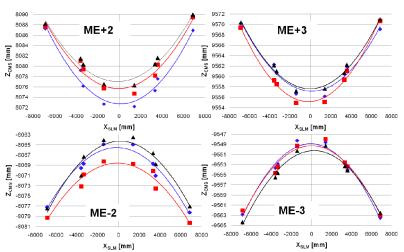
Using a different method:

- 1. Extrapolate segments between pairs of overlapping chambers
- 2. Solve system of local alignment corrections
- 3. Compare with independent photogrammetry (PG) (which has 210 μ m, 0.23 mrad resolution)


9 minutes of LHC beam-halo data!

- Muon system is instrumented with physical position detectors
- Complimentary to track-based alignment

Only showing laser monitors on an endcap disk:

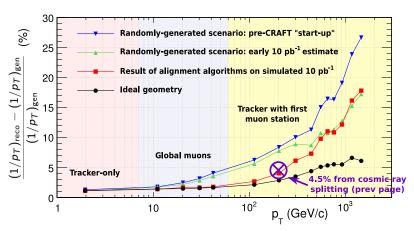


Hardware alignment

Jim Pivarski 23/24

- ▶ Bending of the endcap disks due to CMS \vec{B} -field
- ▶ About 14 mm in the center (huge!), parallel to beamline (z) (tracks are not very sensitive to CSC z positions, but the displacement is large)

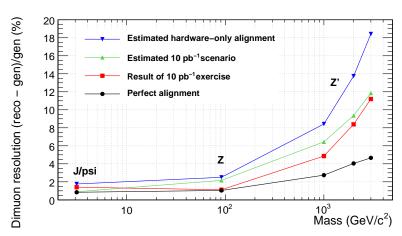
S. Guragain, M. Hohlmann


- Muons are key to many signatures of new physics
- ► CMS muon system has excellent signal-to-background due to its many layers in modular chambers
- ▶ Long "lever arm" of muon system also helps to resolve p_T of highest-momentum muons
- \triangleright Alignment is an important correction for p_T resolution; cosmic rays and beam-halo data allow us to test our alignment procedures now
- ▶ Alignment exercises revealed biases in muon tracking, other than muon misalignment (not shown here, for time)
 - if you're looking for ways to help, I can point you to unresolved problems offline

Backup

Curvature resolution vs. p_T

Jim Pivarski 26/24



 Important caveat: MC resolution studies include the whole muon system, cosmic ray splitting (purple point) is only central DT barrel

Mass resolution vs. mass

Jim Pivarski 27/24

▶ Important caveat: not signed-off by J/ψ and Z groups