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I You just heard about tracking in the silicon tracker; now extend
that to the muon system

I Modular tracking environment: tracking in self-contained chambers

map of muon stations (CMS quarter view)
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I Inside of each chamber are 6–12 detector layers sensitive to the
positions of passing muons (100–300 µm)

I Each can measure the position and direction of local tangents to
the muon’s trajectory called segments

I Connect segments into a
continuous track called a
standAloneMuon (used
especially in HLT trigger)

I Match to closest tracker track
to form a globalMuon
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Other reconstruction methods

I trackerMuon: starting from a
tracker track, find at least one
matching segment (traditional
method for experiments with
smaller muon systems)

I caloMuon: match tracker track
to a calorimeter shower
consistent with a
minimum-ionizing particle

I Purpose: high efficiency across the whole momentum range (low-pT

tracks curl in the ~B field, less likely to form standAloneMuon)

I As always, there’s a trade-off between efficiency and background
rejection

I User can select from different reconstruction algorithms
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Efficiency
(high 90%’s above 10 GeV)

Background rejection
(depends on specific analysis)

Resolution
(focus of this talk)

I L1 trigger

I HLT reco and cuts

I offline track
seeding

I analysis cuts

I π → µν decays in
flight (so-called
“fake muons”)

I misidentification,
punch-through
(actual fake muons
are rare)

I measuring pT

I ~B-field outside
solenoid

I TeV muon showers

I scattering

I chamber
alignment

Also relevant for resolution, but not
covered in this talk

I intrinsic hit resolution
I calibration
I layer alignment
I reconstruction algorithms for TeV

muon showers
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Accuracy of reconstruction track parameters at the interaction point
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(from the TDR)
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Z ′ reconstructed with misaligned tracker elements and muon chambers

I Misaligning the muon system (blue) has a greater effect at higher
momenta/Z ′ masses
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I Further complicated by the fact that muon tracks are not helices

inside the solenoid outside (field is reversed)
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(early TOSCA simulation from Magnetic Field Task Force)

I Field lines try to follow iron return yoke: ~B(~x) ≈ 0 in most chambers
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I Highest-energy muons from LHC collisions will have qualitatively
different behavior in material: TeV muon showers
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I In the minimum-ionizing regime, track-by-track energy loss can be
non-negligible compared to energy

I Limit of many soft interactions (“multiple scattering”) → Gaussian

I Single hard scattering has power-law tails

I Real distribution is a convolution of both, highly dependent on energy
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1. Select globalMuons

2. Re-fit them to the tracker only

3. Propagate to the muon system

4. Convert peak of residuals distribution
(track intersections minus hit positions)
into alignment corrections

Matches muon chamber positions to tracks given by the tracker

Motivation
I Decouples track-fitting from alignment

I Tracker dominates resolution for most (pT � 200 GeV) tracks
anyway

I Peak of residuals distribution is where minimally scattered tracks
agree on chamber position; highly-scattered tracks disagree in
different ways (possibly asymmetric tails)
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I Model misalignment effects and propagation effects in a single
ansatz, fit with Minuit

I 4-D residuals (position and angle) → 6 rigid body degrees of freedom

MC before alignment
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I Model misalignment effects and propagation effects in a single
ansatz, fit with Minuit

I 4-D residuals (position and angle) → 6 rigid body degrees of freedom

MC before alignment MC after alignment
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I Model misalignment effects and propagation effects in a single
ansatz, fit with Minuit

I 4-D residuals (position and angle) → 6 rigid body degrees of freedom

CRAFT data before alignment CRAFT data after alignment
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I MC simulation of CRAFT alignment (DT wheels −1, 0, +1)

I Everything is the same as real-data alignment except

I perfect tracker alignment, magnetic field, internal DT alignment

(to test chamber alignment procedure only)

I Final x misalignment is O(100–300 µm), like hit resolution
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I High-level test: split each cosmic ray into two LHC-like halves, fit
top and bottom independently

I any mismatch in 1/pT is purely instrumental
I select pT & 200 GeV to emphasize contribution of the muon

alignment (long lever arm for resolution of small sagitta)

Before muon alignment After muon alignment Plot from Technical
Design Report

(no misalignment)

sigma ∼ 0.025 at
200 GeV for a perfect

detectorJ. Tucker
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I Cosmic rays for alignment and diagnostics are mostly vertical:
incomplete coverage in endcaps from cosmic rays (many chambers
have zero hits)

I No such problem with collisions muons
Simulated alignment using 50 pb−1 pp → µX , same technique:
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I M. Schmitt and J. Pivarski are working on methods to align endcap
chambers with cosmic rays

I Beam-halo results (next page) demonstrate understanding of
detector issues in real data
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Using a different method:

1. Extrapolate segments between pairs of
overlapping chambers

2. Solve system of local alignment corrections

3. Compare with independent photogrammetry (PG)
(which has 210 µm, 0.23 mrad resolution)

9 minutes of LHC
beam-halo data!
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I Muon system is instrumented with physical position detectors

I Complimentary to track-based alignment

Only showing laser monitors on an endcap disk:
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I Bending of the endcap disks due to CMS ~B-field

I About 14 mm in the center (huge!), parallel to beamline (z)
(tracks are not very sensitive to CSC z positions, but the displacement is large)

S. Guragain, M. Hohlmann
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I Muons are key to many signatures of new physics

I CMS muon system has excellent signal-to-background due to its
many layers in modular chambers

I Long “lever arm” of muon system also helps to resolve pT of
highest-momentum muons

I Alignment is an important correction for pT resolution; cosmic rays
and beam-halo data allow us to test our alignment procedures now

I Alignment exercises revealed biases in muon tracking, other than
muon misalignment (not shown here, for time)

I if you’re looking for ways to help, I can point you to unresolved
problems offline
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Backup
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I Important caveat: MC resolution studies include the whole muon
system, cosmic ray splitting (purple point) is only central DT barrel
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