

Jets, Leptons,* and MET: Oh My!

- Who We Are
- What We Are Doing Now
- What We Are Planning For
- Why You Should Join Us

Charles Plager (UCLA/FNAL)

For the LJMet Group.

^{*} LJMet only deals with a single lepton, but the title sounded better with the s.

Who We Are

- We're a full-service group: we want to support and explore any work that will help us understand physics that manifests itself in LJMet final states:
 - Top pair production,
 - Single top,
 - Boosted top,
 - SUSY,
 - Etc.

- But we also want to have a clear impact in a particular analysis, to focus the strengths of US-based physicists, and we want to do it on early physics.
- Meanwhile, CMS is becoming very interested in "vertical integration"
 - What are the steps we must execute to pull together an entire analysis, beginning to end?
- So, we try to push for more focus on taking a solid early-physics topic all the way through while maintaining breadth....

What We Are Doing Now

- We want to aim for understanding "W+jet" and "top quark" events in the LJMet final state.
- Where this goes depends on what you optimize for:
 - Measurement of a top-quark production property
 - Start with top pair production.
 - Understanding backgrounds for:
 - SUSY searches
 - Other exotic signals
- Keep in mind that we want to maintain our breadth while also having focus, because that is how we will find new physics!
- See Pratima's talk next for more!

"Why Start With Top Physics?"

- When we start taking data, we will be
 - Running at an energy never explored before.
 - Using a detector that is not yet fully calibrated (although we have done an amazing job using cosmic events).
- While many cross sections increase from the Tevatron to the LHC energies, the top pair cross section grows by more than **two orders of magnitude**.
 - Will be very easy to have very pure samples of top quarks.
- Top quark physics (particularly in LJMet) gives us an unparallel opportunity to help us calibrate the detector:
 - $-\not\!\!\!E_T$
 - jet energy corrections,
 - b-tagging,
 - **-** ...
 - \Rightarrow The top quark is the new Z boson!

"If top ain't your signal, it'll be your background!" - Me

(IP)

Top Pair Phase Space - I

- Top pair events live in some complicated multidimensional space of event requirements.
- SM backgrounds to top (e.g. W+jets, Drell-Yan, QCD) populate a separate, but **not** completely disjointed region.

The basic event selection for tt cross-section-type analyses should encompass a SM control region and should not be limited to the core tt region

Top Pair Phase Space - II

- Top pair events live in some complicated multidimensional space of event requirements.
- SM backgrounds to top (e.g. W+jets, Drell-Yan, QCD) populate a separate, but **not** completely disjointed region.
- Simplifying a lot, BSM could:
 - Be strongly overlap with the core tt region (BSM1).
 - Live only in the tails of ttbar (BSM2).
 - Be almost totally distinct (BSM3).

Beyond the SM Physics

- Lots of new physics can show up in this topology. Examples from PTDR:
 - Various mSUGRA points (up to $m_{1/2} \sim 700 \text{ GeV}$) observable with significance ~ 30 in muon plus jets with 10 fb^{-1} .
 - H \rightarrow WW \rightarrow lvjj through vector boson fusion, 5σ significance for 140-200 GeV with 30 fb⁻¹ (so a little beyond "first" physics?).
 - Charged Higgs in tt \rightarrow HWbb with H \rightarrow τv has sensitivity to large range of tan β at 30 fb⁻¹, gg \rightarrow tbH similarly.

• So:

- SM physics in LJMet comes very quickly.
- Some beyond-SM physics in LJMet could come almost as quickly, other new stuff not far behind.
- We want to be ready to understand this topology quickly!

What We Need To Do

• We need to select a LJMet sample, and try to explain its physics content -- both in rate and in dynamics -- through SM processes:

- When SM processes can't do it, then we are on to something. But sample content is the first step -- we can do this as a joint effort, and then individuals can study particular old/new physics processes.
- Most thornier backgrounds are common to all physics of interest.
- We have Tevatron experience -- this isn't rocket surgery.

The To-Do List

- We've got lots to do:
 - Event selection -- understanding individual objects, global variables, isolation, trigger selection, optimization.
 - Working with V + jets group.
 - Backgrounds especially multijet, W+jets, can we use TeV-style techniques?, tagged vs. untagged analyses, samples needed?, systematics to worry about?
 - Acceptance/efficiency -- usual stuff, especially b-tagging, trigger, what tools do you need, systematic uncertainties of importance.
 - MC samples -- have what we need,
 know how to use, systematics?
 - Cross checks in control regions, systematic studies.

Applying Our Tevatron Experience

- We have experience in doing this work with real data:
 - Estimating multijet/fake lepton backgrounds from data -- both D0 and CDF have worked hard on this and have a lot of techniques that could be applicable.
 - This would be a *great* place for the LJMet group.
 - Setting normalization of W+jets backgrounds from data.
 - Our intuitive feeling for the trigger and working with complementary samples for studies of efficiency etc.
 - b-tagging efficiencies and systematic uncertainties.
 - What to do in the face of increasing interactions/crossing?
 - What to do in the face of an imperfect early detector?

LJMet Goals

- Our goals:
 - Develop the analysis techniques that will get physics done.
 - Share knowledge, come to agreements on best practices.
 - Share infrastructure/tools, e.g. code for the common good.
 - Documents the above in a form other than slides from talks.
 - Provide supportive environment for people learning.
- We want to be able to funnel both
 - particular physics measurements and
 - tools/techniques of use to many measurements
- Into the relevant CMS PAG's
 (e.g., Top, V + jets, SUSY, Exotica, ...)
 - ⇒ We expect to get the first analyses out with the first tens of pb⁻¹s (**including** using b-tagging).

Relation with other LPC groups

- Many other LPC working groups are single-object. LJMet is a multi-object group.
 So, start from work of single-object groups and extend to our particular environment:
 - Lepton ID and isolation when there are more jets around?
 - Is that thing an electron or a jet?
 - How useful is missing ET as a kinematic variable given pileup etc.?
 - What missing ET corrections are needed for this particular final state?
 - What are good discriminators made from multiple objects?
 - How well do we have to know any of this to quickly establish SM physics and move on to the new stuff?

People and physics in progress

- We know of a number of institutions that are going to be involved (or at least have expressed some interest):
 - Brown, UCLA, UCR, Cornell, FNAL, Florida, UIC, Johns Hopkins, Kansas, Nebraska, Notre Dame, Northwestern, Purdue Calumet, Rutgers, Virginia, and more coming soon.
 - Lots of friendly people.
- Some analyses that people have been working on:
 - tt cross section measurements
 - Jet-energy scale calibrations using tt events
 - Tagging efficiencies for different jet flavors using tt events
 - Heavy Z'→tt searches
 - General SUSY searches in 1+jets events
 - **–** ...
- A number of these topics will benefit from more people working on them -- especially students. And for sure we could use help developing tools and techniques that will be helpful to all of these topics.

Please Come Join Us!

- Introduce yourself to the conveners:
 - kenbloom@unl.edu
 - narain@hep.brown.edu
- Come to our first meeting next week!
- Join our mailing list:
 - lpc_lepton_j_met@fnal.gov
- It's OK if you are just starting out -- LJMet is a place to learn and get friendly feedback.
- Want something to do to get your feet wet? We can come up with some ideas, and who knows what physics you might discover with it.
- The LHC is a once in a lifetime opportunity. This channel provides access to a wide range of possible new physics.

