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  Why?  How?
  A priori use of tracks and calorimeter

      “Particle Flow”
  A posteriori corrections to calorimeter using tracks

      “JPT” & “tcMET”
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Calorimeter Tower
○ 1 HCAL Cell
○ 25 ECAL Crystals underneath
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Charged hadrons
○ spread by high B-field
○ degrades angular
   resolution
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Charged hadrons
○ 65% of jet E
○ direction at vertex
○ resolution tracker

Use B-field and hi-res tracker to 
our advantage!

Momentum Resolution
○ 1% for 100 GeV



5

Photons
○ 25% of jet E
○ resolution ECAL

Use granularity and resolution of 
ECAL to our advantage!

Energy Resolution
○ 

Separate
○ charged particles
○ neutral particles

Granularity
○ 0.02 (∆ηx∆φ)

≈ 2%/
!
E
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Neutral Hadrons
○ 10% of jet E
○ resolution HCAL

Reduce dependence on HCAL

Energy Resolution
○ 

Granularity
○ 0.1 (∆ηx∆φ)

≈ 100%/
!
E
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Particle Flow in CMS

• CMS ideally suited to reconstruct and identify particles!
• Very Large Tracker; High B-Field
• Large Lever-arm for High PT Muons
• Fine Granularity, High Resolution ECAL
• Nearly full solid-angle coverage HCAL
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Goal of Particle-Flow
• Reconstruct & identify all particles 

• γ, e, µ, charged hadrons, neutral hadrons, pileup particles, and 
even converted photons & nuclear interactions

• Use the best combination of all CMS sub-detectors to get the best 
estimates of energy, direction, particle ID

• Provide consistent & complete list of ID’d & calibrated particles for
• Tau reconstruction
• Jet reconstruction
• Missing Energy and total Visible Energy determination

• Use of Redundant Information:  Calorimeter & Tracking
• Tracking and Calorimetery fundamentally integrated

• Very different from “Traditional” Tau, Jet, MET Reconstruction...
• Corrections performed after the fact
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Using the Detailed Full Detector

Muons
Electrons

Significant improvement achieved for leptons
by using the Detailed Full Detector... ...why not also for all other particles:  

charged pions, neutral hadrons, etc?

...and then use for Jets and MET?
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Particle Flow Algorthm 
First Associate Hits within Each Detector

HCAL
Clusters

ECAL
Clusters

Tracks
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Particle Flow Algorthm
Linking Across Detectors

HCAL
Clusters

ECAL
Clusters

Tracks
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Basic Idea of Particle Flow :
Finally Apply Particle ID & Separation

HCAL
Clusters

ECAL
Clusters

Tracks

neutral hadron 

Charged
Hadrons

Electron
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Very Basic View of Particle Flow

• Find and “remove” muons (σtrack)
• Find and “remove” electrons ( min[σtrack, σECAL] )
• Find and “remove” converted photons ( min[σtrack, σECAL] )
• Find and “remove” charged hadrons (σtrack)
• Find and “remove” V0’s (σtrack)
• Find and “remove” photons (σECAL)
• Left with neutral hadrons (10%) (σHCAL + fake)
• Use above list of Reconstructed Particles to describe 

the entire event!
• Jets & MET remain simple (no complicated corrections): 
• just use standard algorithms with “particles” instead of 

“towers”

“Clean” the Event During Reconstruction!
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• Approaching Self-calibration

• much smaller residual corrections  
" 5% compared with 65% at 100 GeV
• Nearly independent of Jet Flavour

• Better Energy Resolution
• Factor 3 at 15 GeV (tracker dominates)
• Converges to Calorimeter at high pT

• Better Angular Resolution
• Especially in azimuth (B-Field)
• Especially at low pT, but also at high pT

• Enables Better Jet Definitions
• Clustering Algorithms:  

• smaller cone sizes possible
• lower pT thresholds possible

• Reduces isolated e/γ faking a jet
• can be excluded from jet clustering

• Particle Multiplicity and Content: 
• neutral hadronic, charged hadronic, 

photonic, leptonic, etc
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• MET is the very last step

• Benefits from all progress in the jets!
• Will continue to benefit from further 

progress!
• Better able to measure zero-MET 

(e.g as in QCD) 
• Improved estimate of event visible energy

• better measure of “zero” imbalance
• 60% better at 500 GeV of Sum ET

• Better able to measure real-MET 
(e.g. as in ttbar)
• Improved Energy Response

• Calibrated within 5% above 20 GeV
• Improved Energy Resolution

• About 60% better at 20 GeV
• Factor 1.5 or 2 better in ttbar

• Better able to distinguish 
• real-MET from zero-MET
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Particle Flow
Mean      -1.74
RMS      14.49

Calorimeter
Mean       6.22
RMS      27.58
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Massimo Nespolo
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• Track-corrected Calorimeter Jets
• “seeded” by calorimeter only
• add track momenta inside 

jet-cone
• subtract average single-particle

response for each track
• Very different from Particle-Flow

• conceptionally and systematically
• track & calo. info. simultaneously used to reco. particles
• jets “seeded” by reconstructed particles

• Multiple (different) systematic approaches
• Good!  Helps Understanding.  Healthy competition :-) 
• Especially important during early running 19
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Calorimeter Zero-Suppression

• Zero-Suppression of the 
calorimeter
• Only positive values above the

HCAL Pedestals are read out
• ECAL Selectively read-out
• Noise thresholds also applied

• Correct for ZSP   ↔  single particle energy = track momentum
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Single Particle Response

• Form single particle response map
• η and pT

• In cone:
• add track momenta 
• subtract average single-particle

response for each track
• out of cone

• just add track momenta

ZSP
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Track Finding Efficiency

trk - < calo response >
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Putting it all together

• Jet response improves close to unity
• Energy Resolution improves
• Angular Resolution stays consistent with calorimeter

• Later versions will also use tracks to correct jet angle
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Performance of JPT

• Jet response improves close to unity
• Energy Resolution improves
• Angular Resolution stays consistent with calorimeter

• Later versions will also use tracks to correct jet angle
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Performance of JPT

• Jet response improves close to unity
• Energy Resolution improves
• Angular Resolution stays consistent with calorimeter

• Later versions will also use tracks to correct jet angle
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Track Corrected MET
• Track corrected MET

• born out of desire to 
reduce MET tails in searches for 
new physics
• well measured tracks used 

to remove badly measured 
calorimeter cells

• Basic Idea
• add track momenta 
• subtract average single-particle

response for each track
• Similar to JPT algo, except

• ZSP correction not applied
• No out of cone tracks
• Track eff. corr. not applied

• Important to separate µ’s from π’s!
• particular attention given

to muon corrections
• Focus is on robustness (tails) & 

startup conditions
• Response and Resolution also

improved (added bonus!)
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Attempt to Control Tails!
• Track corrected MET

• born out of desire to 
reduce MET tails in searches for 
new physics
• well measured tracks used 

to remove badly measured 
calorimeter cells

• Basic Idea
• add track momenta 
• subtract average single-particle

response for each track
• Similar to JPT algo, except

• ZSP correction not applied
• No out of cone tracks
• Track eff. corr. not applied

• Important to separate µ’s from π’s!
• particular attention given

to muon corrections
• Focus is on robustness (tails) & 

startup conditions
• Response and Resolution also

improved (added bonus!)
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Resolution also Improves!
• Track corrected MET

• born out of desire to 
reduce MET tails in searches for 
new physics
• well measured tracks used 

to remove badly measured 
calorimeter cells

• Basic Idea
• add track momenta 
• subtract average single-particle

response for each track
• Similar to JPT algo, except

• ZSP correction not applied
• No out of cone tracks
• Track eff. corr. not applied

• Important to separate µ’s from π’s!
• particular attention given

to muon corrections
• Focus is on robustness (tails) & 

startup conditions
• Response and Resolution also

improved (added bonus!)
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reduce MET tails in searches for 
new physics
• well measured tracks used 

to remove badly measured 
calorimeter cells

• Basic Idea
• add track momenta 
• subtract average single-particle

response for each track
• Similar to JPT algo, except

• ZSP correction not applied
• No out of cone tracks
• Track eff. corr. not applied

• Important to separate µ’s from π’s!
• particular attention given

to muon corrections
• Focus is on robustness (tails) & 

startup conditions
• Response and Resolution also

improved (added bonus!)

Drell-Yan background rejection
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Summary
• Particle Flow is a fully generic description of the global event

• exploits tracker resolution & full ECAL granularity 
• not tuned to taus, Jets, or MET; improves performance of each

• A posteriori track corrected Jets and MET
• exploits tracker resolution & knowledge of calorimeter performance
• specifically tuned to Jets or MET; also improves performance of each

• Both approaches are highly valuable to systematically understand data!
• All of these algorithms were developed in the context of MC simulations

• Nevertheless, I personally expect all of these tools to be available and 
ready to use with very early CMS data
• i.e. on same timeline (perhaps earlier!) as calor-only Jets & MET

• CMS is a “ready” experiment! Gone are the days: 
• “Whoa...the tracker is complex, what if it doesn’t work?”
• “Yikes...the ECAL is difficult to calibrate, what if it doesn’t work?”
• “The HCAL is simple!  I just want simple things to start with!”

• In a good position to maximize the use of our detector’s redundancy!
• Try all of these tools out for yourselves! 

• Your analysis on Real Data will improve!
• I guarantee it!
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