

"Improving Jets and MET in CMS"

R. Cavanaugh

Fermi National Accelerator Laboratory & University of Illinois at Chicago

J-Term IV, CERN 3 August, 2009

 Why? How?
 A priori use of tracks and calorimeter "Particle Flow"
 A posteriori corrections to calorimeter using tracks

"JPT" & "tcMET"

Calorimeter Tower 1 HCAL Cell
25 ECAL Crystals underneath (loss of granularity)

> > Calorimeter Jets • Large Jet E Corr. • Resolution HCAL $\frac{\sigma}{E} \approx \frac{100\%}{\sqrt{F}}$

Calorimeter Tower 1 HCAL Cell
25 ECAL Crystals underneath (loss of granularity)

Charged hadrons spread by high B-field
degrades angular resolution

> Calorimeter Jets • Large Jet E Corr. • Resolution HCAL $\frac{\sigma}{E} \approx \frac{100\%}{\sqrt{F}}$

Charged hadrons • 65% of jet E • direction at vertex

o resolution tracker

Use B-field and hi-res tracker to our advantage!

Momentum Resolution 0 1% for 100 GeV

Photons • 25% of jet E • resolution ECAL

Use granularity and resolution of ECAL to our advantage!

Granularity \circ 0.02 (ΔηxΔφ) Energy Resolution $\circ \approx 2\%/\sqrt{E}$

Separate charged particles
neutral particles

Particle Flow in CMS

- CMS ideally suited to reconstruct and identify particles!
 - Very Large Tracker; High B-Field
 - Large Lever-arm for High PT Muons
 - Fine Granularity, High Resolution ECAL
 - Nearly full solid-angle coverage HCAL

Goal of Particle-Flow

- Reconstruct & identify *all* particles
 - γ, e, μ, charged hadrons, neutral hadrons, pileup particles, and even converted photons & nuclear interactions
 - Use the best combination of all CMS sub-detectors to get the best estimates of energy, direction, particle ID
- Provide consistent & complete list of ID'd & calibrated particles for
 - Tau reconstruction
 - Jet reconstruction
 - Missing Energy and total Visible Energy determination
- Use of Redundant Information: Calorimeter & Tracking
 - Tracking and Calorimetery fundamentally integrated
- Very different from "Traditional" Tau, Jet, MET Reconstruction...
 - Corrections performed after the fact

Significant improvement achieved for leptons by using the Detailed Full Detector... ...why

...why not also for all other particles: charged pions, neutral hadrons, etc? 9

🚰 Fermilab

University of Illinois at Chicago

...and then use for Jets and MET?

Particle Flow Algorthm First Associate Hits within Each Detector

10

Particle Flow Algorthm Linking Across Detectors

Basic Idea of Particle Flow : Finally Apply Particle ID & Separation

Very Basic View of Particle Flow

"Clean" the Event During Reconstruction!

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" converted photons ($\min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" charged hadrons (σ_{track})
- Find and "remove" V0's (σ_{track})
- Find and "remove" photons (σ_{ECAL})
- Left with neutral hadrons (10%) (σ_{HCAL} + fake)
- Use above list of Reconstructed Particles to describe the entire event!
- Jets & MET remain simple (no complicated corrections):
 - just use standard algorithms with "particles" instead of "towers"

Jet Reconstruction

Approaching Self-calibration

- much smaller residual corrections
 5% compared with 65% at 100 GeV
- Nearly independent of Jet Flavour
- Better Energy Resolution
 - Factor 3 at 15 GeV (tracker dominates)
 - Converges to Calorimeter at high pT
- Better Angular Resolution
 - Especially in azimuth (B-Field)
 - Especially at low pT, but also at high pT
- Enables Better Jet Definitions
 - Clustering Algorithms:
 - smaller cone sizes possible
 - lower pT thresholds possible
 - Reduces isolated e/γ faking a jet
 - can be excluded from jet clustering
 - Particle Multiplicity and Content:
 - neutral hadronic, charged hadronic, photonic, leptonic, etc

Jet Reconstruction

MET Performance

MET Performance

- MET is the very last step
 - Benefits from all progress in the jets!
 - Will continue to benefit from further progress!
- Better able to measure zero-MET (e.g as in QCD)
 - Improved estimate of event visible energy
 - better measure of "zero" imbalance
 - 60% better at 500 GeV of Sum ET
- Better able to measure real-MET (e.g. as in ttbar)
 - Improved Energy Response
 - Calibrated within 5% above 20 GeV
 - Improved Energy Resolution
 - About 60% better at 20 GeV
 - Factor 1.5 or 2 better in ttbar
- Better able to distinguish
 - real-MET from zero-MET

MET Performance

- MET is the very last step
 - Benefits from all progress in the jets!
 - Will continue to benefit from further progress!
- Better able to measure zero-MET (e.g as in QCD)
 - Improved estimate of event visible energy
 - better measure of "zero" imbalance
 - 60% better at 500 GeV of Sum ET
- Better able to measure real-MET (e.g. as in ttbar)
 - Improved Energy Response
 - Calibrated within 5% above 20 GeV
 - Improved Energy Resolution
 - About 60% better at 20 GeV
 - Factor 1.5 or 2 better in ttbar
- Better able to distinguish
 - real-MET from zero-MET

A posteriori Track Corrections to Jets & MET

- Track-corrected Calorimeter Jets
 - "seeded" by calorimeter only
 - add track momenta inside jet-cone
 - subtract average single-particle response for each track
- Very different from Particle-Flow
 - conceptionally and systematically
 - track & calo. info. simultaneously used to reco. particles
 - jets "seeded" by reconstructed particles
- Multiple (different) systematic approaches
 - Good! Helps Understanding. Healthy competition :-)
 - Especially important during early running

19

Calorimeter Zero-Suppression

- Only positive values above the HCAL Pedestals are read out
- ECAL Selectively read-out
- Noise thresholds also applied

Correct for ZSP ↔ single particle energy = track momentum

20

 $E_1 = E_{iet}^{raw\ calo} \times f_{ZSP}(E_{jet}^{raw\ calo}, \eta_{jet})$

🚰 Fermilab

Single Particle Response

- Form single particle response map
 η and p_T
- In cone:
 - add track momenta
 - subtract average single-particle response for each track
- out of cone
 - just add track momenta

🛠 Fermilab

Track Finding Efficiency

Putting it all together

🗲 Fermilab

at Chicago

niversity of Illinois

- Jet response improves close to unity
- Energy Resolution improves
- Angular Resolution stays consistent with calorimeter
 - Later versions will also use tracks to correct jet angle 23

Performance of JPT

Fermilab

- Jet response improves close to unity
- Energy Resolution improves
- Angular Resolution stays consistent with calorimeter
 - Later versions will also use tracks to correct jet angle 24

Performance of JPT

Fermilab

Illinois

- Jet response improves close to unity
- Energy Resolution improves
- Angular Resolution stays consistent with calorimeter
 - Later versions will also use tracks to correct jet angle 25/

Track Corrected MET

Attempt to Control Tails!

- Track corrected MET
 - born out of desire to reduce MET tails in searches for new physics
 - well measured tracks used to remove badly measured calorimeter cells
- Basic Idea
 - add track momenta
 - subtract average single-particle response for each track
 - Similar to JPT algo, except
 - ZSP correction not applied
 - No out of cone tracks
 - Track eff. corr. not applied
 - Important to separate μ 's from π 's!
 - particular attention given to muon corrections
- Focus is on robustness (tails) & startup conditions
 - Response and Resolution also improved (added bonus!)

🛠 Fermilab

Resolution also Improves!

- Track corrected MET
 - born out of desire to reduce MET tails in searches for new physics
 - well measured tracks used to remove badly measured calorimeter cells
- Basic Idea
 - add track momenta
 - subtract average single-particle response for each track
 - Similar to JPT algo, except
 - ZSP correction not applied
 - No out of cone tracks
 - Track eff. corr. not applied
 - Important to separate μ 's from π 's!
 - particular attention given to muon corrections
- Focus is on robustness (tails) & startup conditions
 - Response and Resolution also improved (added bonus!)

🛠 Fermilab

Resolution also Improves!

- Track corrected MET
 - born out of desire to reduce MET tails in searches for new physics
 - well measured tracks used to remove badly measured calorimeter cells
- Basic Idea
 - add track momenta
 - subtract average single-particle response for each track
 - Similar to JPT algo, except
 - ZSP correction not applied
 - No out of cone tracks
 - Track eff. corr. not applied
 - Important to separate μ 's from π 's!
 - particular attention given to muon corrections
- Focus is on robustness (tails) & startup conditions
 - Response and Resolution also improved (added bonus!)

Drell-Yan background rejection

Case	0 jets	1 jet	2 jets	3+ jets
baseline	915/201863	4860/53607	852/2978	2044/5201
	0.5%	9%	22%	39%
tcMET	435/201863	1085/53607	852/2978	797/2044
	0.2%	2%	6%	15%
factor of improvement	2.1	4.5	3.5	2.6

Fermilab

Summary

- Particle Flow is a fully generic description of the global event
 - exploits tracker resolution & full ECAL granularity
 - not tuned to taus, Jets, or MET; improves performance of each
- A posteriori track corrected Jets and MET
 - exploits tracker resolution & knowledge of calorimeter performance
 - specifically tuned to Jets or MET; also improves performance of each
- Both approaches are highly valuable to systematically understand data!
- All of these algorithms were developed in the context of MC simulations
 - Nevertheless, I personally expect all of these tools to be available and ready to use with very early CMS data
 - i.e. on same timeline (perhaps earlier!) as calor-only Jets & MET
- CMS is a "ready" experiment! Gone are the days:
 - "Whoa...the tracker is complex, what if it doesn't work?"
 - "Yikes...the ECAL is difficult to calibrate, what if it doesn't work?"
 - "The HCAL is simple! I just want simple things to start with!"
 - In a good position to maximize the use of our detector's redundancy!
- Try all of these tools out for yourselves!
 - Your analysis on Real Data will improve!
 - I guarantee it!

Backups - Systematic Checks

CM

Fermilab

CMS

Backups - Systematic Checks

‡ Fermilab

