Introduction to the CMS Trigger

Leonard Apanasevich University of Illinois at Chicago apana@fnal.gov

- Trigger Challenges at the LHC
- CMS Trigger Architecture
 - Level-1 Trigger
 - High Level Trigger
- Trigger Rates and Menus
- HLT Processing Times
- CMS Trigger Group Structure

The Large Hadron Collider

Tevatron vs LHC

	CDF/DØ	CMS
Inst. Luminosity	10 ³²	10 ³⁴
Bunch crossing freq.	2.5 MHz (396ns)	40 MHz (25ns)
Pileup	≈2 events	≈20 events
L1 output rate	2-10 kHz	100 kHz
L2 output / HLT input	~500 Hz	
L3 output rate	50 Hz	100 Hz
Filter Farm	~300 nodes	~1000 nodes

UIC Trigger Challenges at the LHC

- At design L = 10^{34} cm⁻²s⁻¹
 - Interaction rate: ~1 GHz
 - ~20 pp events per 25 ns crossing
 - 1 kHz W events
 - 10 Hz top events
 - < 10⁴ detectable Higgs decays/year
- Event size: ~1 MB (≈75M channels)
 - \rightarrow 1000 TB/sec for 1 GHz input rate
 - ~300 MB/sec affordable
 - Enormous rate reduction necessary!
 - but without losing interesting physics
- Select in stages:
 - Level-1 Triggers
 - 1 GHz to 100 kHz (1/10000 reduction)
 - High Level Triggers
 - 100 kHz to 100 Hz (1/1000 reduction)

References

CMS

The Trigger System

- Level-1 Trigger Technical Design Report:
 - <u>CERN/LHCC 2000-038</u>
- DAQ and High-Level Trigger Technical Design Report:
 - <u>CERN/LHCC 2002-026</u>
- Physics Technical Design Report Volume 2 Appendix E:
 - J. Phys. G: Nucl. Part. Phys. 34 995-1579
- CMS High Level Trigger Analysis Note:
 - <u>AN 2007/009</u>
- Also a note describing the outcome of the Winter/Spring trigger reviews is being prepared
 - Expected to be available in September

August 3, 2009

pp. 67

Trigger Architecture

- CMS has a two-tiered system to handle the LHC challenge
 - Level-1 trigger reduces rate from 40 MHz (x^{ing} freq) to 100 kHz (max)
 - High-Level triggers reduce rate from 100 kHz to O(100 Hz)

Progress in networking/switching has justified CMS choice

Level 1: Only Calorimeter & Muon

Pattern recognition much faster/easier

Simple algorithms Simple Algorithms

Small amounts of data

August 3, 2009

US CMS JTerm IV

1.290 m

Negotive 2 endcap - Trigger Sowers As viewed from behind the endcap facing the interaction point

Muon Trigger Geometry

- DT: drift-tube system
- CSC: cathode strip chamber system
- RPC: resistive plate chamber system

Initial coverage of RPC is staged to η <1.6

Initial coverage of CSC 1st station is staged to η <2.1

Muon Trigger Overview

Level-1 Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - All above include location in η and ϕ
- Missing E_T & Total E_T

Output

L1 Accept from combinations & proximity of above

UIC L1 Global Trigger Algorithms

Particle Conditions

μ⁻(2)

ISO(1) = 1, ISO(2) = 1

MIP(1) = 1, MIP(2) = 1

SGN(1) = 1, SGN(2) = -1

Logical Combinations

128 Level-1 trigger bits. Bits can be set using (up to 128) logical combinations of Level-1 objects. Thus it is possible to use a single Level-1 bit to seed multiple independent HLT paths. August 3, 2009 US CMS JTerm IV

Level-1 Trigger Menu

Determined by the physics priorities of the experiment

- L1 Menu optimized to fit within the L1 bandwidth
- Allow a safety factor of 3
 - underestimation of input cross sections, poor beam conditions, detector performance, etc.
 - 17 kHz instead of nominal 50 kHz allowed by DAQ
- Realistic menu including double and mixed triggers for specific physics channels
- Two L1 menus currently available
 - $L = 8e29 \text{ cm}^{-2}\text{s}^{-1}$ (day-1 menu)
 - $L = 1e31 cm^{-2}s^{-1}$ (MC studies)

- CMS DAQ is a number of functionally identical, parallel, small DAQ systems
 - Build up 512×512 switch from 8 64×64 switches (DAQ slices)
- At startup expected to have 4 such slices (US contributes one slice), yielding 50 kHz maximum Level-1 input rate to HLT
 - L1 fully scoped to deliver up to 100 kHz rate

High Level Trigger (HLT)

Event

Manager

×

~1000 dual processor PC cluster

High-Level triggers reduce rate from 50 kHz to O(150 Hz)

- HLT does event reconstruction "on demand" seeded by the L1 objects found, using full detector resolution
- Algorithms are essentially offline quality but optimized for fast performance

Builder Network 100 GB/s

Computing Services

Control

and

300 MB/s

Filter Systems

Monitor

HLT Algorithm Design

- Each HLT trigger path is a sequence of modules
- Processing of the trigger path stops once a module returns false
- Reconstruction time is significantly improved by doing regional dataunpacking and local reconstruction across HLT
- All algorithms regional
 - Seeded by previous levels (L1, L2, L2.5)

"Local": using one sub-detector only "Regional": using small (η, ϕ) region

UIC Trigger Menu for L=8e29 cm⁻²s⁻¹

• Total L1 rate 6 kHz

- Full menu available here: TSG 27 VI 09 8E29
- L1 scales optimized for low luminosity
- Muons:
 - L1/L2/L3 muons run unprescaled at $p_T=20/9/3$ GeV
- Electrons:
 - No isolation requirements at L1
 - Unprescaled at p_T =10 GeV with large pixel-matching window (LW)
- Photons:
 - No isolation requirements at L1
 - Unprescaled at p_T =15 GeV with no isolation requirement
- Jets:
 - No L1/HLT jet corrections, except for 0.7 scale factor in HF
 - Unprescaled at p_T =30 GeV (~60 GeV corr.)
- MinBias:
 - Several algorithms installed based upon HF-tower $E_{\rm T}$ over threshold, HF $E_{\rm T}$ ring sums, Ecal $E_{\rm T}$, and pixel triplets

Trigger Rates by Object

- Muon: 33 Hz
- Electron: 30 Hz
- Photon: 9 Hz
- Jet: 36 Hz
- MET & HT: 5 Hz
- B-Tau: 4 Hz
- MinBias: 14 Hz
- Cosmics/Halo: 7 Hz
- Total: 138 Hz

UIC Trigger Menu for L=1e31 cm⁻²s⁻¹

• Total L1 rate 9 kHz

Full menu available here: TSG 27 VI 09 1E31

- Muons:
 - L1/L2/L3 muons run unprescaled at p_T=20/11/9 GeV
- Electrons:
 - No isolation requirements at L1
 - Unprescaled at p_T=20 GeV with no isolation & at 15 GeV with loose track isolation
- Photons:
 - No isolation requirements at L1
 - Unprescaled at p_T =25 GeV with no isolation requirement
- · Jets:
 - Anticipate L1/HLT jet corrections will be available. Using MC-based corrs. for now
 - 4 jet thresholds. Unprescaled at p_T =110 GeV
- MinBias:
 - Several algorithms installed based upon HFtower $E_{\rm T}$ over threshold, HF $E_{\rm T}$ ring sums, Ecal $E_{\rm T}$, and pixel triplets

Trigger Rates by Object

- Muon: 37 Hz
- Electron: 25 Hz
- Photon: 22 Hz
- Jet: 18 Hz
- MET & HT: 9 Hz
- B-Tau: 13 Hz
- X-Triggers: 11 Hz
- MinBias: 8 Hz
- Total: 144 Hz

HLT Processing Times

August 3, 2009 Will eliminate with time-out mechanism

August 3, 2009

US CMS JTerm IV

LHC Trigger is Challenging

- A new crossing every 25 ns with ~ 20 events at design luminosity \rightarrow 1 GHz of events input
- All data stored 3 μs then all but 50-100 kHz rejected
 - Rejection of 99.99% of data without losing discovery physics!
- Rate of storage to archive is ~ 150 Hz
 - Rejection of 99.99997% of data without losing discovery physics!!
- Requires extremely fast processing and correlation of local and global information from ECAL, HCAL, DT,CSC and RPC systems
- Distribute & synchronize fast signals over large detector volume
- Remaining event filtering done on a farm of CPUs running offline quality reconstruction algorithms
- Now is a great time to get involved in Trigger and DQM activities as we prepare for real data
 - > Understanding the trigger is essential for any physics analysis
 - > Help is needed in many areas
 - > Lots of interesting work remains to be done

Backup Slides

Data identification with Bunch Crossing Number (Absolute synchronization)

Absolute Synchronization method based on the LHC Bunch Structure

LHC bunch structure

August 3, 2009

US CMS JTerm IV

Sum E_T of the central hit tower (pink) and the nearest neigbor w/ the highest E_T (one of the yellow towers)

•Electron (Hit Tower + Max)

- 2-tower ΣE_T > threshold
- Hit tower H/E < 5%
- Hit tower 2x5-crystal strips >90-95% of tower E_T in 5x5 (Fine Grain)
- Isolated Electron (3x3 Towers)
 - Quiet neighbors: all towers pass Fine Grain & *H/E*
 - One group of 5 EM corners has E_T < threshold (~1 GeV)

August 3, 2009

Level-1 Jet and Tau Trigger

Jet or τE_T

- 12x12 trig. tower ΣE_T sliding in 4x4 steps w/central 4x4 E_T > others
- τ: isolated narrow energy deposits
 - Energy spread outside τ veto pattern sets veto
 - Jet $\equiv \tau$ if all 9 4x4 region τ vetoes off

Muon Trigger Track Finders

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Match DT and CSC tracks with RPC to improve efficiency and quality Correlator combines them into one vector / station.

Hit strips of 6 layers form a vector.

Cathod Strip Chambers (CSC)

Sort based on P_T , Quality - keep loc.

Combine at next level - match

Sort again - Isolate?

Top 4 highest P_T and quality muons with location coord.

threshold

UIC HLT Rates (L=1e32 cm⁻²s⁻¹)

