Analysis Tools

Petar Maksimovic (JHU)

- How the information flows through an analysis
 - skimming, slimming, thinning
- Our common language: Physics Analysis Toolkit (PAT)
- "Interactive" use (vs. "batch" -- cmsRun)
- Options for "Interactive" use
 - Bare ROOT, FW Lite in ROOT[], FW Lite standalone, Full FW
- Other stuff to be mindful of (RooFit, RooStats, etc.)

Data flow from detector to analysis

- We will be flooded with data access to data is a big issue
- Must optimize: filter events into smaller and smaller data samples, so that you only need to run over a small portion of data.
 - S/B improves with tighter cuts
 - This is called <u>skimming</u>

Secondary Dataset

(Also need to drop unneeded parts of each event – more later.)

Group Skim (e.g. Higgs PAG)

Final Sample

(interactive

More on the Art of Skimming

- All the skimming is done by cmsRun jobs (i.e. Full Framework) running on various computer clusters
- Each skimming step needs to reduce sample size by one or more orders of magnitude to make it feasible

- User skims & final sample production: your chance to apply `almost final' analysis cuts:
 - cuts are tight enough to make the final sample small (otherwise the interactive use is slow!)
 - at the same time, cuts must be sufficiently loose to allow for enough wiggle room, further cut studies, etc.

Reduction in event size: RECO, AOD

- Important: remove unneeded information <u>from each event</u>
- EDM stores event data as collections of objects (Data Formats)
 - collections of unneeded objects can be `dropped'
 ==> could make output sample significantly smaller (so we can trade looser cuts vs tigher content...)
 (or trade both for faster "interactive" use)
 - this is called <u>slimming</u>
 - it's tricky hard to know up front what will not be needed later
- RECO: collections which are output in reconstruction
- AOD: data needed for doing an analysis a subset of RECO
- RECO and AOD are <u>Data Tiers</u>
 - ==> their content is fixed and uniform for all CMS

Next step in data reduction: PAT

- RECO and AOD contain all the needed collections
- EDM stores these collections efficiently
 - objects in various collections are inter-linked, saves disk space, optimizes I/O, etc...
 - however, this makes it harder for humans to access it (requires non-trivial C++ gymnastics)
- What most users need is something which is simple to access:
 - objects which <u>aggregate</u> all the related information = PAT objects (PAT electron, PAT jet, etc.)
- User also needs to control what goes into these objects
 - your PAT jet may be larger (contain more info) than mine!
 - ==> PAT is not a data tier! -- it's content is fluid

PAT = Physics Analysis *Tookit*

- provides ways of making and storing information (algorithms and data members in PAT objects)
 - algorithms provided and vetted by POG and other experts
- make use of modular structure of CMS Framework
- provide easy access via member functions in DataFormats
- serve ~80% analyses in CMS (likely more, has enough flexibility)

PAT Objectives

PAT must balance competing needs

PAT Object = reco::Candidate + extra info

- PAT Objects inherit from their corresponding reco::Candidates
- Everything in DataFormats/PatCandidates

PAT – our common language

- PAT is <u>a toolkit!</u>
 - you can choose which piece of each PAT object you'd like to keep
 - each piece is made according to a standard recipe (provided by experts)
- The "Chez PAT" metaphor –
 PAT is like a restaurant menu:
 - you can order what you want: choose to add or not add pieces of information to your PAT objects
 - but, we all are ordering from the same menu!
 the asparagus on your plate is made in the same way as on mine
 - (and if not -- I have a way of knowing exactly what is different!)
 - the chef is an expert

PAT Workflow

Benefits from PAT

Tecnological:

- you need to write less C++ code
 - smaller chance of mistakes (procedure) & bugs (coding)
- code is provided / vetted / maintained by experts
- common validation (by POGs and AT group)
- common tools to validate yourself

Sociological / Organizational:

- shared development
- sensible defaults
- common language:
 - you can move to another analysis or PAG and quickly be productive
 - helps analysis review: you'll know exactly what others have done
- provenance
 - you can find out how data sample was made (yours or somebody else's)

Interactive use

Interactive analysis = anything that can sustain the cycle

- 1) start running the macro
- 2) wait for it to finish
- 3) stare at plot(s), ponder your next move
- 4) realize that changes are needed
- 5) edit macro, save it, compile it
- 6) GOTO 1
- everything except (3) and (4) should not take much time

Interactive Analysis – the options

- Somebody gave you a PAT-tuple, or you made it yourself. Now what? You can run
 - Bare ROOT on CMS data
 - clumsy, tricky, complicated

2. FW Lite = ROOT + CMS DataFormats + few helper classes

- 3. FW Lite standalone executable:
 - same as (2) but without a root[] prompt

- 4. cmsRun:
 - CMS Framework is very fast; if no geometry and calibrations are loaded, event processing is approaching #2 and #3

- Bare ROOT on TTrees made from CMS data
 - no benefit in portability or speed (same as #2 or #3)
 - one extra step (filling a TTree) = more jobs, more code to write
 - loss of provenance + not a common language !!!

FW Lite on PAT

- PAT objects are monolithic perfect for FW Lite!
 (unlike RECO and AOD, where the associations make life harder)
- FW Lite on PAT-tuples = bare ROOT on TTees
 plus many other advantages since PAT-tuples are CMS data!
 - you can view the event with Fireworks
 - you can use edmProvDump to look into provenance
 - you can use other EDM tools
 - you can use code both in the full Framework and FW Lite
 - but can't use edm::Event, edm::Handle<>, ParameterSet, etc.
 - we recommend writing your event selection as such a function; this will save you a lot of grief later
- NB: don't trust CINT and <u>always compile</u> your macro

FW Lite status

- Used for analyses already
- Distribution:
 - you of course want to analyze your PAT-tuples on your laptop
 - SL4.6 supported with CMSSW
 - other GNU/Linuces supported via apt-get or tarball
 - Mac native built available
 - Windows via CERNVM
- Needed for collisions:
 - access to full trigger info
 - more complete access to provenance

Tutorials later today

- There will be two tutorials at 1 pm, running in parallel
- Beginners tutorial:
 - will focus on FW Lite + very basic PAT
 - will be held in Hornets Nest (WH 8X)
- Advanced tutorial:
 - CRAB
 - manipulation of PAT workflows to clean, cross-clean, and define your own PAT-tuple content
 - will be held in Sunrise (WH 11NE)

Summary

- Skimming is a vital part of all CMS analyses
- You need to understand your Physics Groups skimming plan
- If needed, make your own skims and final sample (PAT-tuples)
- FW Lite ideal for analyzing PAT-tuples on your laptop
 - will work on most OSes
- Other tools for fitting (RooFit), statistics (RooStatsCms), and little helper classes (e.g. sideband subtraction, histogram management) also available for ROOT and FW Lite
 - All these will be a part of the "CMS laptop kit" ...
- Give us feedback! We take it very seriously
 - Complaints on the original PAT workflow resulted in PAT v2.0, ...

BACKUP

PAT Concepts

Balance competing needs

Other tools for ROOT / FW Lite

- RooStats = inter-experiment statistics tools
 - built on top of RooFit (thus greatly favoring RooFit)
 - included in ROOT 5.22 → into 3.1.0

- RooStatsCms = additional CMS tools
 - in PhysicsTools/RooStatsCms package
 - also included in 3.1.0

- Other helper classes available
 - sideband subtraction (uses RooFit), histogram management, etc.

Your "Laptop Kit"

- Copy your PAT-tuples onto your laptop
- Install
 - FW Lite, Fireworks, edmProvDump, etc.
 - RooFit and RooStats come with ROOT (brought by FW Lite)
 - check out code from CVS
 - most notably RooStatsCms
 - other useful tools as needed (POG algorithms, PAG event selection, sideband subtraction, histogramming, etc...)
 - build your own shared libs locally with scram/ACLiC
 - load them into FW Lite or compile standalone executable
- Go to a coffee shop, and work away!