704 MHz Cavity Evolution

R. Calaga, BNL, May 8, 2009

 ${\sim}13$ m, 0.2 GeV/Module

Cryomodule will consist of:

- 8×5 -cell cavities
- 8 fundamental power couplers
- 7 compact transition sections
- 2-half end-caps
- 8 tuner assemblies
- 8 helium vessels and cryogenic feed-throughs
- Super-insulation, thermal, magnetic shielding
- Support structures, access ports, instrumentation etc...

Mid-Cell Optimization

Parameter	BNL I	BNL II
	Mid & End Cell	Mid & End Cell
Frequency [MHz]	703.75	703.75
Iris Radius, R_{iris} [cm]	8.5	8.5
Wall Angle, α [deg]	25	$\{14, 12\}$
Equatorial Ellipse, $R = \frac{B}{A}$	1.0	1.0
Iris Ellipse, $r = \frac{b}{a}$	1.1	1.2
Cavity wall to iris plane, d [cm]	2.5	$\{1.7, 1.2\}$
Half Cell Length, $L = \frac{\lambda\beta}{4} [cm]$	10.65	10.65
$H = D - (R_{iris} + b + B)[cm]$	$\{4.195, 3.792\}$	$\{19.7124, 19.4034\}$
Cavity Beta, $\beta = \frac{v}{c}$	1.0	1.0

End-Cell Optimization

Parameter	BNL I	BNL II
	Mid & End Cell	Mid & End Cell
Frequency [MHz]	703.75	703.75
Iris Radius, R_{iris} [cm]	8.5	8.5
Wall Angle, α [deg]	25	$\{14, 12\}$
Equatorial Ellipse, $R = \frac{B}{A}$	1.0	1.0
Iris Ellipse, $r = \frac{b}{a}$	1.1	1.2
Cavity wall to iris plane, d [cm]	2.5	$\{1.7, 1.2\}$
Half Cell Length, $L = \frac{\lambda\beta}{4} [cm]$	10.65	10.65
$H = D - (R_{iris} + b + B)[cm]$	$\{4.195, 3.792\}$	$\{19.7124, 19.4034\}$
Cavity Beta, $\beta = \frac{v}{c}$	1.0	1.0

Five-cell

 $\begin{aligned} \text{Eacc} &= 25 \text{ MV} - 5 \text{ cells (15 MV/m)} \\ \text{Epk/Eacc} &= 2.34 \text{ (19\% increase)} \\ \text{Bpk/Eacc} &= 4.69 \text{ mT/MV/m (18\% decrease)} \\ \text{R/Q} &= 930 \text{ (7\% increase)} \\ \text{Stiffness x2 smaller} \end{aligned}$

Cavity Stiffness & Tuning

Stiffness and tuner load reduced by x2 compared to BNL I design

Local machined thickness at iris & equator (\sim 1.4 mm).

2.5 mm compression, \sim 35 kHz

Towards a compact transition section

Enlarged beam pipe + Couplers and/or ferrites

Conventional HOM couplers

Ridged waveguide + Couplers and/or ferrites

- Option 3 will need shorter than 2, which is the current ERL design
- No sensitive rejection-filter required, HOM power handling easier, FPC/tuner placement easier

Transition Section

24 cm BP transition section long. Ridged transition helps reduce it significantly

Ridges can be modified to further decrease the transition length. Simulations needed to evaluate the effectiveness

Outlook

Need further optimization of iris aperture (7.5-8.5 cm)

Detailed studies on transition section (ridged structures)

Transmission line charateristics

Manufacturing difficulties

Loops and/or ferrites

Superconducting joint using radial loop

