

Lecture 4 :

Beam position stability
Insertion devices
Technological aspects
Time structure
Conclusions

Electron beam sizes and divergences at Source points (SOLEIL)

Horizontal emittance 3.7 nm.rad

SYNCHROTRON

			H Size	H Divergence	
	BetaX	EtaX	SigmaX	Sigma XP	Effective
	m	m	μm	μrad	Emittance H
Short straight	17,8	0,285	388	14,5	5,61 nm.rad
Medium straight	4,0	0,133	182	30,5	5,56 nm.rad
Long straight	10,1	0,200	281	19,2	5,40 nm.rad
Dipole 4°	0,38	0,021	43	107,0	

Vertical emittance 37 pm.rad (1% coupling)

			V Size	V Divergence	
		BetaZ	SigmaZ	SigmaZP	
		m	μm	μ rad	
	Short straight	1,75	8,1	4,6	
	Medium straight	1,77	8,1	4,6	
	Long straight	8,01	17,3	2,2	
	Dipole 4°	16,01	24,5	2,1	
JM Filho			CERN lectu	ure 4, March 5 & 6 2	2009

SUNCHROTRON Search for the best stability

for 3rd generation light sources this implies **sub-µm stability** (vertical plane)

- \Rightarrow identification of sources of orbit movement
- \Rightarrow passive damping measures
- \Rightarrow orbit feedback systems

It concerns :

- \Rightarrow Site and building aspects
- \Rightarrow Storage Ring Girder design
- \Rightarrow Insertion devices effects

SUNCHROTRON Search for the best stability

The stability criteria holds for photon beam stability.

- \Rightarrow It depends on the Energy of the photons used at the beamline
- \Rightarrow More critical for **hard X-ray beamlines** than for VUV soft X-ray beamlines

Exemple SOLEIL : Soft X-ray Beamline « TEMPO » at 1.6 keV

JM Filhol

Building design (SOLEIL)

Buildings were designed for optimum position stability :

<u>All potential sources of vibrations in a separate technical building :</u> All pumps for different cooling circuits + supported on damping material Compressor for the cryogenic source

Synchrotron building :

Storage Ring and Experimental Hall slabs isolated from the other parts of the building

Exp. Hall : Storage Ring Tunnel : ⇒ Air temperature regulated at 21 ℃ ± 1.0 ℃
⇒ Air temperature regulated at 21 ℃ ±0.1 ℃
⇒ Water cooling circuit regulated at 21 ℃ ±0.1 ℃

External perturbations

The surface of the 2 roads adjacent to the site were smoothen to minimize perturbation from cars and trucks

JM Filhol

CERN lecture 4, March 5 & 6 2009

Vibrations measurements : Effect of the crane on the storage ring slab

8

SUBLE SYNCHROTRON

Storage Ring :

- Specific design of the girders supporting the magnets (1st eigen mode > 40 Hz)
- \succ High resolution Beam Position Monitors (< 1 μ m)
- Fast position feedback (1-100 Hz) implemented in 2007
- Minimize effects of ID gap changes (magnetic measurements)

Vibration measurements on SR girders

Residual levels with all utilities ON (cooling, ventilation,..)

Displacement Spectral Density in µm/√Hz

SYNCHROTRON

Vertical position stability (1 week) On Medium Straight Sections

Closed orbit corrections performed with as many correctors as BPM (DIAMOND), or with less correctors than BPM (SVD algorithm, SOLEIL, ESRF,...)

JM Filhol

SYNCHROTRON

CERN lecture 4, March 5 & 6 2009

Beam position stability, over 8 hours

Horizontal plane

S

FII

SYNCHROTRON

Vertical plane

IL Overview of fast orbit feedback performance

Summary of integrated rms beam motion (1-100 Hz) with FOFB and comparison with 10% beam stability target

	FOFB BW	Horizontal	Vertical
ALS	40 Hz	< 2 µm in H (30 µm)*	< 1 µm in V (2.3 µm)*
APS	60 Hz	< 3.2 µm in H (6 µm)**	< 1.8 µm in V (0.8 µm)**
Diamond	100 Hz	< 0.9 µm in H (12 µm)	< 0.1 µm in V (0.6 µm)
ESRF	100 Hz	< 1.5 µm in H (40 µm)	~ 0.7 µm in V (0.8 µm)
ELETTRA	100 Hz	< 1.1 µm in H (24 µm)	< 0.7 µm in V (1.5 µm)
SOLEIL	100 Hz	< 0.8 µm in H (20 µm)	< 0.2 µm in V (0.6 µm)
SLS	100 Hz	< 0.5 µm in H (9.7 µm)	< 0.25 µm in V (0.3 µm)
SPEAR3	60Hz	~ 1 μm in H (30 μm)	~ 1 μm in V (0.8 μm)

Trends on Orbit Feedback :

- restriction of tolerances w.r.t. to beam size and divergence
- higher frequencies ranges
- integration of XBPMs

JM Filhol

SYNCHROTRON

* up to 500 Hz

** up to 200 Hz

Lecture 4 :

Beam position stability
 Insertion devices
 Technological aspects
 Perspectives

To get a good separation of the harmonics, observation must be performed using a small aperture

Insertion devices SYNCHROTRON

Flux reduction due to emittance and energy dispersion

Effect of emittance and energy dispersion

CERN lecture 4, March 5 & 6 2009

Insertion devices SYNCHROTRON

Flux reduction in case of misalignment (harm 9)

SUNCHROTRON Insertion devices

Flux reduction due to phase error in the sinusoidal field

Insertion Devices construction From specifications to photons

Specifications set with the beamline responsibles :

Insertion type, spectrum range, polarisation, taper, quasi periodicity,...

Magnetic design using software codes :

- SRW (radiation) and RADIA (magnetic configuration)
- CATIA (mechanical design)
- TRACY-II, BETA (effects on beam)

Construction and assembling

Magnetic measurements : B(x,z,s), $\int Bds$, $\int \int Bdsds'$, Gn Gs, phase Shimming : sorting, magnet swapping, magnet moving : IDBuilder Changing field and polarization : Gap changes, or Current changes

Tests on electron beam

vacuum, beam position, tunes => ∫Bds, ∬Bdsds' Gn Gs phase Correction of residual field integrals with embedded correctors + machine correctors (feedforward + slow orbit feedback)

Photon beam characterization on the beamline

Energy spectrum and calibration. => B, flux, emittance, e- beam energy disp.

SOLEIL Insertion devices

There exists a large variety of insertions devices to match at best the specific requirement of any beamline

BL Name	Resp. Ligne	Energy	Source	Location	Magnetic	Polarization/	Periodic	Technology	Status
					length (m)	Switch time			
phase 1									
DESIRS	Nahon	5 - 40 eV	HU640	I 05-L	10	Circ./lin/phasevar	Yes	HU640	Installé
TEMPO #1	Sirotti	45 – 1500 eV	HU80	I 08-M	1,6	Circ./lin.	QP	APPLE II	Installé
PROXIMA1	Thompson	4 – 30 keV	U20	I 10-C	1,96	Lin.	Yes	Hybrid in vacuum	Installé
SWING	Perez	4 – 30 keV	U20	I 11-C	1,96	Lin	Yes	Hybrid in vacuum	Installé
CASSIOPEE #1	Taleb	10 – 1000 eV	HU256	I 15-M	3,1	Circ./lin.	QP	HU256	Installé
CRISTAL	Ravy	4 – 30 keV	U20	I 06-C	1,96	Lin	Yes	Hybrid in vacuum	Installé
phase 2									
PLEIADES #2	Miron	10 – 1000 eV	HU256	I 04-M	3,1	2 s	QP	HU256	Installé
PLEIADES #1	Miron	35 – 1500 eV	HU80*	I 04-M	1,6	Circ./lin.	QP	APPLE II	Installé
ANTARES #1	Ascencio	10 – 1000 eV	HU256	I 12-M	3,1	Circ./lin.	QP	HU256	Installé
DEIMOS #1	Ohresser	500 eV – 6 keV	HU52	I 07-M	1,6	Circ./lin.	Yes	APPLE II	Installé
LUCIA	Flank	500 eV – 6 keV	HU52	I 16-M	1,6	2 s	Yes	APPLE II	Installé
SIXS	Garreau	4 – 30 keV	U20	I 14-C	1,96	Lin	Yes	Hybrid in vacuum	Installé
TEMPO #2	Sirotti	1 – 5 keV	HU44	I 08-M	1,6	2 s		APPLE II	Installé
MicroFOC #2	Sacchi	1 – 5 keV	HU44	I 14-M	1,6	2 s	Yes	APPLE II	Installé
CASSIOPEE #2	Taleb	100 eV – 4 keV	HU60	I 15-M	1,6	2 s		APPLE II	Installé
MicroFOC #1	Sacchi	$45 - 1500 \ eV$	HU80	I 14-M	1,6	Circ./lin.	QP	APPLE II	ready
GALAXIES	Rueff	4 – 30 keV	U20	I 07-C	1,96	Lin	Yes	Hybrid in vacuum	ready
ANTARES #2	Ascencio	100 eV - 4 keV	HU60	I 12-M	1,6	2 s		APPLE II	févr09
SIRIUS	Fontaine	2 – 10 keV	HU36	I 15-C	1,6	2 – 4 keV	Yes	APPLE II	avr09
PROXIMA2 #1	Shepard	5 – 15 keV	U24	I 11-M	1,96	Lin.	Yes	Hybrid in vacuum	juin-09
MicroXmou #1	Belkou	100 eV - 2 keV	HU64	I 10-M	1,6	Circ./lin.	QP	APPLE II	août-09
PSICHE	Itie	10-50 keV	WSV50	I 03-C	2,0	Lin	Yes	Wiggler in vacuum	août-09
DEIMOS #2	Ohresser	350 – 900 eV	HU65	I 07-M	1,6	0,2 s/ 5Hz-10Hz	Yes	EMPHU	oct09
MicroXmou #2	Belkou	1.5 – 3 keV	HU40	I 10-M	1,6	Circ./lin.	Yes	APPLE II	janv10
MicroScopium	Somogyi	4 – 30 keV	U20 ?	I 02-C	1,96	Lin.	Yes	Hybrid in vacuum	sept10

JM Filhol

S

FII

SYNCHROTRON

CERN lecture 4, March 5 & 6 2009

EIL Electromagnet Helical Undulator HU640

S

DESIRS		
	DanFysik	HU640
	Period	640 mm
	Nbr of Periods	14
	Length	10.0 m
	Туре	Electro- magnetic
	Min. gap (mm)	19
	Polarisation	Circ./Lin. adjustable
	Bxmax	0.09 T
	Bzmax	0.11 T
	Photon Energy	5 – 40 eV

Apple-II Type Helical Undulator HU80

TEMPO, PLEIADES, MICROFOCUS

ELETTRA/SOLEIL	3 x HU80
Period	80 mm
Number of Periods	19
Length	1.65 m
Туре	Apple-II
Minimum gap (mm)	15 to 250
Polarisation	Circ./Lin.
Bxmax	0.76 T
Bzmax	0.85 [1.0] T
Photon Energy	80 [35] – 1500 eV

Can create H field, or V field or both, with four independent arrays of permanent magnets

Diagonally opposite arrays move longitudinal, all arrays move vertically

Sliding the arrays of magnetic pole it is possible to control the polarisation of the radiation emitted

In-Vacuum undulator U20

SYNCHROTF	F	
DANFYSIK/SOLEIL	3 x U20	
Period	20 mm	
Nbr of Periods	98	
Length	2.0 m	
Туре	Hybrid In-Vacuum	
Min. gap (mm)	5.5 to 30	A PARA STANK
Polarisation	Linear H	Contract (A) a for a second
Bzmax	0.97 T	
Photon Energy	3 – 18 keV	PROX1, SWING, CRISTAL

Superconducting Wigglers

SYNCHROTRON

Superconducting wigglers are used when a high magnetic field is required 3 -10 T

They need a cryogenic system to keep the coil superconductive

Nb₃Sn and NbTi wires

SCMPW60 at Diamond 3.5 T coils cooled at 4 K 24 period of 64 mm gap 10 mm Undulator K = 21

Cryogenic undulator

The permanent magnet remanent field increases when the magnet is cooled down to 120°K.

- \Rightarrow Possibility to get higher field (~ +20%)
- \Rightarrow Harder X-Ray from in-vacuum undulator

Difficulties : => magnetic measurements at 120°K

=> Minimizing RF losses induced by the beam

Prototype tested on the ESRF ring.

JM Filhol

SYNCHROTRON

Others under construction for SLS, DIAMOND and SOLEIL

Effect of insertion devices on beam dynamics and cures

•Principal effects of undulators and wigglers on beam dynamics

- •Closed orbit distortion
- •Betatron Tune shift
- •Optics variation (β beating)
- •Dynamic aperture reduction
- •Variation of damping times; Emittances; Energy spread (wigglers)

•Remedies => improving field qualities

- •Correction of the field integral + Trim coil for closed orbit distortion
- •Wide transverse gap (reduced roll-off) for linear optics
- •"Magic fingers" to decrease the multipole component of the wiggler
- •Remedies => using beam optics methods
- •Feed forward tables for trim coil orbit corrections
- •Local correction of optics functions (alpha matching schemes, LOCO)
- •Non-linear beam dynamics optimisation with wiggler

Compensation of closed orbit distortion

SYNCHRC

JM Filhol

Field integrals can't be corrected < ~100 G.cm in the lab \Rightarrow Final correction with beam: feedforward on dedicated steerers = f(gap)

Effects on beam dynamics

Tune Shift U20 SWING U20 SWING OFFSET - 500 µm 0.0018 0.000 0.0016 0.0004 0.0014 0.0012 0.0002 0.001 **5** 0.0008 NUX 0.0006 -0.0002 0.0004 0.0002 -0.0004 -0.0002 -0.0006 10 12 14 22 24 26 28 4 6 8 16 20 Coupling and Injection efficiency 16 18 20 22 24 26 28 30 Gap (mm)

Undulator	Injection efficiency at 5.5 mm gap	Coupling effect
PROXIMA1	75%	0.1%
SWING	82%	- 0.1%
CRISTAL	88%	0%
3 U20	60 % (85%)	0%

No vertical scraping effect but effect of non linear fields (roll-off)

SYNCHROTRON

Lecture 4 :

Beam position stability
 Insertion devices
 Technological aspects
 Perspectives

RF SYSTEMS : cavities

Superconducting RF cavities : SOLEIL

FII

SYNCHROTRON

- \rightarrow 2 cavities @ 352 MHz
- → 150 kW per cavity (LEP type coupler)
- \rightarrow 2MV per cavity
- \rightarrow 2 cryomodules installed
- \rightarrow few problems with the cold tuning system

(Collab CEA/CERN/SOLEIL/ESRF)

SUBLEIL SYNCHROTRON RF SYSTEMS : cavities

Superconducting RF cavities : CESR-B

(Cornell, CLS, Taiwan, Diamond)

→ 500 MHz

- → 250 kW per cavity (Waveguide coupling)
- \rightarrow 2.4 MV per cavity (8 MV/m)

IOT's : ELETTRA, DIAMOND, ALBA,...

RF SYSTEMS : Transmitters

Solid state amplifier : SOLEIL and soon ESRF

→ 4x190 kW @ 352 MHz

FIL

SYNCHROTRON

- → Smooth operation
- \rightarrow Excellent reliability

NEG coating (developped at CERN) => for low gap ID vessels at many facilities

More generalised use at SOLEIL (56% of the ring) and MAXLAB Average pressure of Cell C07 normalised to current Vs. the beam dose

SUBLE BRASSTEMS

LIBERA BPM digital electronics provide sub micron resolution, and also :

- \Rightarrow simultaneous turn by turn measurement
- \Rightarrow slow orbit data
- \Rightarrow fast orbit feedback data, and processing
- \Rightarrow with low current dependence

In use at Diamond, SOLEIL, ELETTRA, ASP, ALBA, ESRF, PETRA3,...

Top-Up operation consists in the continuous (very frequent) injection to keep the stored current constant

TOP-UP Operation

Already in operation at APS, SLS, SPring8, TLS, DIAMOND

SOLEIL will operate Top-Up soon

SYNCHROTRON

Operating modes are machine (or beamline) specific (frequency of injection, # of shots, charge) $\Delta I/I \sim 10^{-3}$

TOP-UP Operation

Advantages of Top-Up Operation: stability

Top-Up improves stability:

- constant photon flux on the beamline optics and detectors
- higher average current
- constant thermal load on components

BPMs block stability measured at SLS (M. Boge)

- without Top-Up $\sim 10 \ \mu m$
- with Top-Up < 1 μ m

Top-Up is crucial to achieve long term sub- μ m stability

Time structure

Many facilities provide specific filling pattern to enable time structure experiments

ESRF : Single bunch, 16 bunch, Hybrid mode (Camshaft),...

SOLEIL : 8 bunch, hybrid mode

Bunch length are of 10-20 ps (rms)

$$\sigma_{z} = \frac{\alpha c}{2\pi f_{s}} \sigma_{\varepsilon} \propto \sqrt{\frac{\alpha \gamma^{3}}{d V_{RF} / dz}}$$

Request to get shorter bunches

⇒Low alpha lattices provide ps bunch length at very low current per bunch (BESSY II, ANKA, ELETTRA, SPEAR3, SOLEIL) $\alpha = \frac{1}{L} \oint \frac{D_x}{\rho} ds \approx 10^{-6}$

 \Rightarrow Femto slicing enables to produce 100fs bunch "slices" using an energy modulation induced by a laser (ALS, SLS, BESSY, and soon SOLEIL). The photon flux is rather weak.

CONCLUSIONS

 \Rightarrow Third generation light sources are very reliable source of high brightness, which provide very stable X-rays.

 \Rightarrow They operate ~5000 hours/year, with > 95% beam time availability

 \Rightarrow No evidence of under subscription: the demand from the User's community and the number of beamlines per facility is still increasing

 \Rightarrow The agreement with model is excellent for the linear optics and improvements can be foreseen for the nonlinear optics

⇒Future developments will target

higher brightness	=> even lower emittance < 1 nm, lower coupling
≻higher stability	=> Top-Up, sub- μ m over few hundreds Hz
≻short pulses	< 1 ps
higher current	~ 500 mA
≻larger capacity	=> more undulator per straights (canted undulators)