

Lecture 3 : Lattice design

EmittanceDesign criteriaOptimisation

CERN lecture 3, March 5 & 6 2009

Equilibrium Beam Emittance

The natural horizontal emittance for an isomagnetic ring
i.e. all bending magnets having same bending radius is :

 J_x the horizontal damping partition number. $J_x \sim 1$ (zero field gradient in bending magnet) $J_x < 2$ (vertical focusing in bending magnet) : (potentially) emittance reduction of a factor two $\varepsilon_x = \frac{C_q \gamma^2 \langle H \rangle_{dipole}}{J_x \rho}$

 $C_q = 3.83 \text{ x } 10^{-13} \text{ m}$ and γ is the Lorentz factor. ρ is the bending radius.

H is the so called lattice invariant or dispersion's emittance or H-function

 $H(s) = \gamma_x(s)\eta^2(s) + 2\alpha_x(s)\eta(s)\eta'(s) + \beta_x(s)\eta'^2(s)$

 $\langle ... \rangle$ average taken only in the part of the circumference where photons are emitted, (BM and IDs)

*****In practical units, $ε_x$ is given by :

$$\varepsilon_{x}[nm.rad] = 1470 E[GeV]^{2} \frac{\langle H \rangle_{dipole}}{\rho J_{x}}$$

 $\mathbf{E}_{\mathbf{x}}$ is completely determined by the energy, bending field and lattice functions.

Equilibrium Beam Emittance

✤ After calculation of the <H> value, the natural horizontal emittance for an isomagnetic ring i.e. all bending magnets having same bending radius can be expressed as :

 J_x the horizontal damping partition number. θ deviation angle of one bending magnet ρ bending radius l_b bending magnet length N number of bending magnets

 $C_q = 3.83 \text{ x } 10^{-13} \text{ m}$ and γ is the Lorentz factor.

$$\boldsymbol{\varepsilon}_{x} = F \frac{C_{q} \gamma^{2} \boldsymbol{\theta}_{b}^{3}}{\boldsymbol{J}_{x}}$$

$$F = \frac{1}{3} \left[\frac{\beta_0}{l_b} - \frac{1}{4} \alpha_0 + \frac{1}{20} \gamma_0 l_b \right]$$

 $\beta_0, \alpha_0, \gamma_0$ twiss parameters at the entry of the BM

It is a general lattice property, there is no assumption on the lattice type.

JM Filhol

⇒ Should use many short Bending Magnets to get low emittance

Minimum Emittance (with Achromatic Condition)

The minimum equilibrium beam emittance in an isomagnetic ring with an Achromatic Arc Condition, $\eta_0 = \eta'_0 = 0$, at the entrance of the **BM** :

$$\varepsilon_{x,\min} = \frac{C_q \gamma^2 \Theta^3}{4\sqrt{15} J_x}$$

SYNCHROTRON

 \Rightarrow DBA or TBA lattices (Double/Triple Bend Achromat)

DBA used at:TBA used at:ESRF,ELETTRA,ALS, SLS,APS, SPring8,PLS,TLSBessy-II,Diamond,...

. . .

JM Filhol

Minimum Emittance (without Achromatic Condition)

By breaking the achromatic condition (non-zero dispersion in straight sections) we can obtain the configuration in which the emittance becomes the smallest.

$$\varepsilon_{x,\min} = \frac{C_q \gamma^2 \Theta^3}{12 \sqrt{15} J_x}$$

SYNCHROTRON

 \Rightarrow It is smaller by a factor 3 than in the achromatic arc configuration

Example of Machines which move from Achromatic conditions to non zero dispersion in SS

ESRF	7 nm	\rightarrow 3.8 nm
APS	7.5 nm	$\rightarrow 2.5 \text{ nm}$
SPring8	4.8 nm	\rightarrow 3.0 nm
SPEAR3	18.0 nm	\rightarrow 9.8 nm
ALS (SB)	10.5 nm	\rightarrow 6.7 nm

JM Filhol

The minimum emittance can't be easily achieved :

Ideal values for SOLEIL and Design values (without achromatic condition) :

Emittance Achieved

 $\alpha_{0.min} = \sqrt{15} = 3.873$ $\alpha_0 = 1.8$ $\beta_0 = 1.5 m$ $\beta_{0,min} = 2.17m$ $\varepsilon_{x0} = 3.7 \text{ nm.rad}$ $\mathcal{E}_{x0,min} = 1.8 nm.rad$

The ideal value $\alpha_{0,min} = \sqrt{15}$

SYNCHROTRON

causes the betatron function to reach a sharp minimum inside the **BM** and then to increase from there on to large values in the quadrupoles, leading to extremely high chromaticity

 \Rightarrow Chromaticity has to be corrected for two reasons :

Momentum acceptance : some variation of energy deviation has to be accepted by the storage ring for reasons of **beam lifetime**.

Head tail instability: collective oscillation of electrons in head and tail of the bunch leading to very fast beam loss.=> damped by operating with positive chromaticity

Chromaticity :
$$\xi \sim \int (-K_Q \beta + m_s \beta \eta) ds \ge 0$$

quadrupole strength (introduce negative ξ)

sextupole strength (correct the ξ)

Strong chromaticity correction sextupoles reduce the dynamic aperture and this negatively impacts on the beam lifetime.

Ultra low emittance Emittance rings

β *(m)*

□ MAX-IV (Sweden): 7-BA (zero dispersion in SS) 12 cells 3 GeV 287 m 12 SS x 4.6 m = 55 m => \mathbf{E} x = 0.8 nm.rad *Project just approved*

PETRA 3 (DESY) :

SYNCHROTRON

7 old octants FODO + 1 New octant DB 6 GeV 2304 m Damping Wigglers 6 SS for a total of 45 m (14 IDs) $\Rightarrow \mathbf{E}x = 1 \text{ nm.rad}$

Commissioning soon !

Ultra low emittance Emittance machine

□ NSLS II (BNL) : DBA (30 cells) 3 GeV 792 m Damping Wigglers 30 SS for a total of 240 m => $\mathcal{E}x = 0.6$ nm.rad Construction starts in 2009

SYNCHROTRON

No Damping wiggler $=> \varepsilon_0 = 2nm$ @ 2 x (theoretical minimum)

Low bend field B = 0.4 T→ low radiation loss $U_0=286kV$

Damping wigglers for small emittance $\epsilon = \epsilon_0 \times U_0 / (U_0 + U_w)$ $=> \epsilon = 0.6 \text{ nm}$

Beam sizes and Effective emittances

Due to the non zero dispersion η_x in the straight section, the horizontal beam size is enlarged by the beam energy spread. This energy spread results from the lattice properties which imposes an equilibrium value. Typically, $\sigma_E = \delta E/E \sim 10^{-3}$.

$\sigma_x = \sqrt{\varepsilon_x \beta_x} + (\varepsilon_x \beta_x)$	$(\eta_x \sigma_E)^2$		$\sigma_{x'} = \sqrt{\varepsilon_x / \mu}$	$\overline{\beta_x} \implies$	$\left(\boldsymbol{\mathcal{E}}_{x} \right)_{effect}$	$\sigma_{x'} = \sigma_x \cdot \sigma_{x'}$
			H Size	Divergence		
	BetaX	EtaX	SigmaX	Sigma XP	Effective	SOLEIL
	m	m	μm	μrad	Emittance H	H emit= 3.7 nm.rad.
Short straight	17,8	0,285	388	14,5	5,61 nm.rad	$\delta E/E = 1.016 \ 10^{-03}$
Medium straight	4,0	0,133	182	30,5	5,56 nm.rad	The effective
Long straight	10,1	0,200	281	19,2	5,40 nm.rad	smaller than the emittance achieved in
Dipole 4°	0,38	0,021	43	107,0		achromatic conditions (~9 nm.rad) !

SYNCHROTRON

SUBLEIL SYNCHROTRON Design Criteria for SOLEIL

* High Brilliance and Coherence

- ✤ Large beam lifetime and good injection efficiency (Top-Up)
- Extensive use of Insertion Devices such as Undulators and Wigglers (highest ratio of available straight sections to the circumference). <u>Variable Polarisation.</u>
- Long straight sections (4)
- **Tunability**: the right photon energy for each experiment (many different ID types)
- * Stability: intensity (Beam Lifetime), position, size and energy
- Compactness (Budget)
- Upgrade potential

Lattice Design Interface

- * Magnet Design: technological limits, coil space, multipolar errors
- **Vacuum**: impedance, pressure, physical apertures, space
- * **Radiofrequency**: Energy acceptance, bunch length, space
- Diagnostics: Beam Position Monitors, positioning,..., space
- Alignment: Orbit distortions and correction
- * Mechanical Engineering: Girders, vibrations
- * **Design Engineering**: Assembling and feasibility
- * Insertions Devices : small gap in vacuum undulators, high field wigglers,.

Space requirements: Magnet, Vacuum, RF, Diagnostics and Engineering

Rencontres LAL / SOLEIL (17 Avril 2008)

CERN lecture 5, warch 5 & 6 2009

Linear Optimisation

- ✓ Reasonable maximum for β_x and β_z < 30m (High beta values amplify errors)
- Reasonable beta split at the centre of the achromat
- ✓ Natural chromaticities : ξ_x < -100 and ξ_z < -50
- ✓ Dispersion (η_x) at the centre of the achromat > 0.25m
- ✓ Low β_{z} (~1m) in the centre of undulator straight sections high brilliance and accomodation of low gap IDs
- ✓ Minimum Beam Stay Clear for efficient injection ⇒ minimum ratio of $(\beta x)_{max}/(\beta x)_{inj}$ ($\beta xinj > 10m$)

□ 2 purposes :

- correction of both chromaticities ξ_x , ξ_z
- on momentum and off momentum dynamic aperture optimisation

Sextupoles Positions

- ⇒ Phase optimisation to minimise nonlinear effects
- ⇒ Large number of sextupole families
- ⇒ LOW sextupoles strengths
- $\Rightarrow \text{ Positions where } \beta_x <\!\!<\!\!\beta_z \quad \text{ then } \beta_x \!>\!\!>\!\!\beta_z$
- \Rightarrow At least 2 such positions where the η_x is large

Optical functions for the SOLEIL initial lattice (APD)

One Superperiod

S

SYNCHROTRON

Optical functions for the SOLEIL present lattice

SYNCHROTRON

One Superperiod 30 $\beta_{x}(m)$ v_x= 18.20 25 E_x= 3.73nm.rad at 2.75 Ge<mark>√</mark> V_z= 10.30 $\beta_{z}(m)$ 20 15 10 5 $10*\eta_x(m)$ 0 0 10 20 30 50 60 70 80 40 s (m) Opening of the achromat to create short SS **JM Filhol** CERN lecture 3, March 5 & 6 2009

Factor of Merit ?

Source	Energy (GeV)	Θ	C(m)	ΣL_{SS}	E _{x0} (nm.rad)	F
ALS	1.9	0.1745	197	81	5.6	0.48
BESSYII	1.9	0.1963	240	89	6.4	0.68
ESRF	6	0.09817	844	201.6	4	1.73
DIAMOND	3	0.1309	562	218.2	2.74	2.11
ELETTRA	2	0.2618	258	74.78	7	3.05
SLS	2.4	0.2440	288	63	5	6.13
SOLEIL	2.75	0.1963	354	159.6	3.7	10.66

$$F = 10^{5} \times \left(\frac{\sum L_{SS}}{Circumference}\right) / (\mathcal{E}_{n})^{2}$$
$$\mathcal{E}_{n} = \frac{\varepsilon_{x0}}{(Energy)^{2} \times (\Theta)^{3}}$$

JM Filhol

Non linear Optimization Strategy

Quality factors :

JM Filhol

SYNCHROTRON

FII

Horizontal tune shift with amplitude

S

FII

SYNCHROTRON

Phase Space diagram

FII

SYNCHROTRON

S

Launched particles over a fine X-Z grid plotting Numerical tunes Highlighting, nonlinearity (diffusion rate)

Frequency Map Analysis (NAFF)

Working point1

Working point 2

JM Filhol

SYNCHROTRON

CERN lecture 3, March 5 & 6 2009

SOLEIL

