

# ILC damping rings and common design issues with CLIC

#### S. Guiducci

## CLIC09 October 14, 2009

1

10/14/09 CLIC09

# ILC Damping Ring Layout



Two 6.4 km, 5 GeV damping rings are located in a shared tunnel around the interaction region

ILC Reference Design Report (RDR) presented at the Beijing GDE Meeting, IHEP, 4-7 February 2007 (http://www.linearcollider.org/cms/)

IIL

# **RDR Lattice Update**



#### **Evolution of the lattice design**

#### Jan 2008: DCO2

- 6.4 km circumference racetrack layout
- FODO style arc cells
- Injection/extraction in opposite straights
- The left straight section is similar to the write straight section

#### Mar 2009: DCO3

- 6.4 km circumference racetrack layout
- Injection /extraction in one straight
- All wigglers and RF cavities in another straight.

#### Aug 2009: DCO4

- 6.4 km circumference racetrack layout
- The e+ injection and e- extraction beam lines for both e+ and e- rings are in the same tunnel when two rings are on top of each other.

#### M. Korostelev

# Dynamic aperture of the DCO2, DCO3 and DCO4 lattices at arc cell phase advance close to 72°



Dashed ellipses show maximum particle coordinates for injected beam size:

S1 one injected beam size: 25 mm horizontally and 7.4 mm vertically

- S1 one injected beam size
- S2 double injected beam size
- S3 triple injected beam size

#### Positioning of the e+ and e- DR rings

İİL



- DR circumference  $6.4 \Rightarrow 3.2$  km
- N bunches  $2600 \Rightarrow 1300$
- Reducing circumference and number of bunches by keeping the same current keeps the same DR performance and reduces costs
- Technical work done for 6 km ring can be applied to 3 km,
  - similar layout
  - Nearly same straight sections as DCO4
  - arcs based on SuperB-like cells



#### STRSECI: INJ/EXTRACTION



10/14/09 CLIC09

# **ILC/CLIC DR Parameters 2008**

| ILC/CLIC DR Parameters 2008        |                              |                      |  |  |  |
|------------------------------------|------------------------------|----------------------|--|--|--|
|                                    | ILC                          | CLIC                 |  |  |  |
| Energy (GeV)                       | 5                            | 2.4                  |  |  |  |
| Circumference (m)                  | 6476                         | 365                  |  |  |  |
| Bunch number                       | 2700 - 5400                  | 312                  |  |  |  |
| N particles/bunch                  | 2x10 <sup>-10</sup>          | 3.7x10 <sup>-9</sup> |  |  |  |
| Damping time $\tau_x$ (ms)         | 21                           | 1.5                  |  |  |  |
| Emittance $\gamma \epsilon_x$ (nm) | 4200                         | 381                  |  |  |  |
| Emittance $\gamma \epsilon_x$ (nm) | 20                           | 4.1                  |  |  |  |
| Momentum compaction                | (1.3 - 2.8)x10 <sup>-4</sup> | 0.80-4               |  |  |  |
| Energy loss/turn (MeV)             | 8.7                          | 3.9                  |  |  |  |
| Energy spread                      | 1.3x10 <sup>-3</sup>         | 1.4x10 <sup>-3</sup> |  |  |  |
| Bunch length (mm)                  | 9.0 - 6.0                    | 1.53                 |  |  |  |
| RF Voltage (MV)                    | 17 - 32                      | 4.1                  |  |  |  |
| RF frequency (MHz)                 | 650                          | 2000                 |  |  |  |

# ILC/CLIC DR Parameters 2009

|                                    | ILC                   | CLIC                  |
|------------------------------------|-----------------------|-----------------------|
| Energy (GeV)                       | 5                     | 2.9                   |
| Circumference (m)                  | 3238                  | 493                   |
| Bunch number                       | 1300                  | 312                   |
| N particles/bunch                  | 2x10 <sup>10</sup>    | 4.1x10 <sup>9</sup>   |
| Bunch distance (ns)                | 6.2                   | 0.5                   |
| Average current (mA)               | 387                   | 125                   |
| Bunch peak current (A)             | 25                    | 21                    |
| Damping time $\tau_x$ (ms)         | 24                    | 1.6                   |
| Emittance $\gamma \epsilon_x$ (nm) | 5300                  | 390                   |
| Emittance $\gamma \epsilon_x$ (nm) | 20                    | 4.9                   |
| Momentum compaction                | 1.3 x10 <sup>-4</sup> | 0.6 x10 <sup>-4</sup> |
| Energy loss/turn (MeV)             | 4.4                   | 5.8                   |
| Bunch length (mm)                  | 6.0                   | 1.4                   |
| RF Voltage (MV)                    | 7.5                   | 7.4                   |
| RF frequency (MHz)                 | 650                   | 2000                  |
| Natural chromaticity x/y           | -100 / -63            | -149 / -79            |

ilr

# **Common issues**

- Low Emittance Tuning
- Collective effects:
  - e-cloud
  - Fast ion
  - IBS

ilr

İİL

- Impedance related effects
- Wiggler dominated ring

#### Low emittance tuning at CesrTA

#### Attain sufficiently low vertical emittance to enable exploration of

- dependence of electron cloud on emittance
- emittance dilution effect of e-cloud
- Design/install low emittance optics  $(1.5 < E_{beam} < 5.0 \text{ GeV})$ 
  - Exploit damping wigglers to reduce damping time and emittance
- Develop beam-based techniques for characterizing beam position monitors
  - BPM offsets, Gain mapping, ORM and transverse coupling measurements ==> BPM tilt

Objectives

- Also for measuring and minimizing sources of vertical emittance including
  - Misalignments
  - Orbit errors
  - Focusing errors
  - Transverse coupling
  - Vertical dispersion
- Develop single bunch/single pass measurements of vertical beam size
- Characterize beam current dependence of lifetime in terms of beam size
- Measure dependencies of beam size/lifetime on
  - Beam energy
  - Bunch current
  - Species

LCWA09 M. Billing



Orbit

Cornell University Laboratory for Elementary-Particle Physics

#### Low Emittance Measurement and Correction I

CesrTA Low emittance tuning

A feature of the orbit is the closed horizontal bump required to direct xrays onto x-ray beam size monitor

-Measure and correct vertical dispersion using skew quads (14) and vertical steering magnets (~60)

Residual vertical dispersion RMS ~ 2.4cm - Signal or systematic? Accuracy of dispersion measurement is limited by BPM systematics

Measured with older *relay* BPM system!!



*10/14/09 CLIC09* 



#### **CBPM II Modules: V Dispersion**



# ATF Low Emittance Tuning

- Necessary: a state-of-theart BPM system, utilizing
  - a broadband turn-by-turn mode (< 10 μm resolution)</li>
  - a narrowband mode with high resolution (~ 100 nm range)





#### Example of DR Laser Wire measurement





# e-cloud mitigation

5mm groove tests in KEKB: reduction up to one order of magnitude less cloud current

ir



New 2mm groove manufactured at KEK. SLAC-KEK design.

10/14/09 CLIC09



SLAC: PEP-II chamber analysis of TIN surface after 10 years



#### **Groove and Clearing electrode**

#### Compared to the case of TiN-coated flat surface;

- Clearing electrode (> +300 V): 1/100~1/500
  - ~1/50 of groove structure



KEK

#### Mitigation Studies



9

-200

Collecto

4

CLIC09

8 7

<sup>6</sup> <sup>5</sup> <sup>4</sup> <sup>3</sup> <sup>2</sup>

-100

grid voltac

-200

İİL

10

10/14/09

Retarding Voltage



**Measurements at CesrTA** 

#### Simulations - CesrTA

### Wiggler: ECLOUD RFA Model

1x45x1 mA e+, 2GeV, 14ns, peak SEY 1.0





Coherent tune shift vs. bunch number



# E-cloud Working Group Charges

- To evaluate electron cloud mitigation techniques, simulations and code benchmarking for the Damping Ring. In particular, evaluate the differences between mitigations as grooves clearing electrodes, coating (TiN, TiZrV NEG and amorphous Carbon) regarding their feasibility, effectiveness, impact on the vacuum system, on the beam impedance and on costs, for different regions of the DR as drifts, arc magnets and wigglers.
- To recommend a baseline solution for the electron cloud mitigations in the 6.4km (RDR) and 3.2km (SB2009) DR.
- Evaluate the 'upgrade' potential from the SB2009 proposed 1312 bunches back to the current RDR nominal value of 2623 (doubling the current) immediately identified bottlenecks.
- Evaluate the current limits due to e-cloud for the 3.2 km DR.

# Fast Ion studies at ATF

|   | Sigma (High Current)  |   |
|---|-----------------------|---|
| ٠ | Sigma (Middle Current | 0 |
|   | Sigma (Low Current)   |   |

IIL



0.4x10<sup>10</sup>/bunch

0.3x10<sup>10</sup>/bunch

0.1x10<sup>10</sup>/bunch

| DR vertical emittance is almost |
|---------------------------------|
| recovered ~< 10 pm. Multi-bunch |
| beam should be well tuned just  |
| before the FII study.           |

First step: Re-confirmation of the 2004 results.

Then measurements by changing the ionization condition (beam intensity, ion pump ON/OFF, Gas injection, ...)

| Table 2: vacuum pressure in 2004 |                         |                         |                         |  |
|----------------------------------|-------------------------|-------------------------|-------------------------|--|
| ion pump status                  | 11mA                    | 26mA                    | 31mA                    |  |
| normal                           | $4.0 \times 10^{-6}$ Pa | $6.0{\times}10^{-6}$ Pa | $6.5 \times 10^{-6}$ Pa |  |

We observed a beam-size growth of 50%. It becomes clear than the result of 2007. Emittance growth in 2004 was much bigger.



### **Bunch lengthening**

To estimate bunch lengthening for the calculated wake functions, the Haissinski equation have been solved using a numerical iterative technique.







A Gaussian bunch of rms length 6mm deforms to shapes with rms length of 6.15 mm with the new BPMs (red), and 6.21 mm with the original BPMs (blue)

There is a possible instability threshold just above the nominal bunch population of 2.0 x10<sup>10</sup> particles: this needs more careful study

M. Korostelev

# ILC DR wigglers

•Extensively used to reduce damping time and emittance and to mitigate IBS effect

•CESR-c type superconducting wiggler: good aperture, very good field quality and proven performance.

- Number of wigglers 88
- Peak field 1.6 T
- Period 0.40 m
- Unit length 2.45 m
- Vertical aperture 5 cm
- •Pole width 20 cm



# ILC/CLIC wigglers

|                                           | ILC<br>RDR | ILC<br>SB2009 | CLIC<br>BINP | CLIC<br>CERN |
|-------------------------------------------|------------|---------------|--------------|--------------|
| B <sub>peak</sub> [T]                     | 1.6        | 1.6           | 2.5          | 2.8          |
| L <sub>w</sub> [mm]                       | 400        | 400           | 50           | 40           |
| Beam aperture full gap [mm]               | 50         | 50            | 13           | 13           |
| Total wiggler length<br>[m]               | 216        | 78            | 152          | 152          |
| Energy radiated/turn<br>in wigglers [MeV] | 9.2        | 3.4           | 5.0          | 5.0          |

ilc

# Fast kicker Experiment at ATF

Pulse source(FID FPG 10-6000KN ) Maximum output voltage  $\pm 10 \text{ kV}$ Rise time @ 10-90% level - < 1 ns Rise time @ 5-95% level - < 1.2 ns Pulse duration @ 90% - 0.2-0.3 ns Pulse duration @ 50% - 1.5-2 ns Output pulse amplitude stability - 0.5-0.7%

June beam extraction tests: everything ok but the kick angle was lower than design.

To increase the kick angle, we ordered 4ns pulse width pulsers (FPG10-3000N2G) to FID. The total kick angle of two pairs of strip-line is 3.6mrad, enough to extract the beam.

Next beam test is scheduled,

2009 Oct. 2weeks(10/19~, 10/26~)



T. Naito

IIL

# Fast kickers in operation at DAFNE



 $e^+$  beam oscillation with fast kick at DA $\Phi$ NE (bunch distance 2.7 ns)

Measured by diagnostics of the horizontal digital feedback system. 100, of 120, stored bunches with kicker pulse centered on bunch 50

# Conclusions

- For the ILC DR main issue is e-cloud mitigation:
  - different tecniques have been demonstrated or are being sperimented
  - We have setup a working group to apply the results of the R&D to the DR design and make recommendations
- ILC DR nominal vertical emittance (2pm) has been demonstrated at Diamond. R&D is needed:
  - to specify alignment tolerance and stability, and diagnostics requirements.
  - to demonstrate low emittance at nominal current, taking into account collective effects.
- For e-cloud and low emittance issues ILC and CLIC DR have common R&D objectives.
- Collaboration on some technical aspects of systems like wigglers, kickers, feedbacks could be useful.
- January 12-15 we will have a joint ILC/CLIC DR workshop