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Introduction – Motivation
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CLIC Wiggler’s optimum efficiency

Transverse equilibrium emittance γǫx at fixed
wiggler length

M. Korostelev: Optics Design and Performance of an Ultar-Low Emittance

Damping Ring for the Compact Linear Collider

Possible wire
technologies: NbTi
or Nb3Sn
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Superconducting wiggler – Example NbTi
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Courtesy of Daniel Wollmann

Main parameters:

Gap 13mm.
Field on axis: B = 2.5 T.
Period length: λ = 40 . . . 50mm.
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NbTi Vertical Racetrack Design – Overview
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NbTi Vertical Racetrack Design – Forces
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NbTi Vertical Racetrack Design – Inductance

LWiggler = 2p
Eperiod
(

I
n

)2
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NbTi Racetrack design – Manufacturing
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NbTi Racetrack design – Short model
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Racetrack design – Set-up for measurement

Details and result: Talk by Remo Maccaferri
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Limitations of NbTi

High gradients in the wire bundle of ≈ 470T/m

For a given configuration:

Bmax [T] ∝ J [A/mm2]

H. Moser and R. Rossmanith: Magnetic field of superconductive in-vacuo undulators in

comparison with permanent magnet undulators
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Comparison – NbTi and Nb3Sn

M. Wilson: Superconducting Magnets

NbTi Nb3Sn

Robust and ready to use Brittle, needs thermal treatment
Magnetical stable Unstable under certain circumstances

Standard EU and US Production Limited availability
Limited Field Higher field limits

1W/m heat deposition1 10W/m heat deposition1

1L. China, D. Tommasini (2008): Comp. study of heat transfer from NbTi and Nb3Sn coils to He
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Nb3Sn Strand

Oxford Instruments, Nb3Sn/RRP R©

Properties
Bare diameter 0.8 mm

Cross section 0.5 mm2

Stabilizer Cu
Non-Cu Volume 53% ± 3%
Twist Pitch ∅ < 1 mm 12 ± 4 mm
Twist Pitch ∅ ≥ 1 mm 40 ± 10 mm
Bare size tolerance ±5 µm
Insulation S-Glass braid
Insulation build 130 µm (nominal)
Ins. size tolerance ±15 µm

Heat Treatment
Cycle with improved RRR and magneto-stability, B.Bordini
#1 Increase T to 205◦C (25◦C/h), hold for 72 h
#2 Increase T to 400◦C (50◦C/h), hold for 48 h
#3 Increase T to 695◦C (50◦C/h), hold for 17 h

Measurements RRR > 300, B.Bordini

B.Bordini, R.Maccaferri, L.Rossi,
D.Tommasini, Test Report of the

Ceramic-Insulated Nb3Sn Small

Split Solenoid, EDMS:907758
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Optimal geometry– NbTi and Nb3Sn

LHC NbTi corrector wire #3, 1.25 x

0.73 mm2 including insulation, 1.13 x

0.61 mm2, Cu:Sc 1.71; 70% of maximal cur-

rent density

0.8mm RRP Nb3Sn Strand; 70% of maxi-

mal current density
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Future work – Heat load from the beam

Important for:

Cryostat design.

Magnetic design, i.e., gap size.

Sources of beam heat load:

Synchrotron radiation.

Image currents on the cold surface (resistive wall heating).

Resonant RF-heating.

Ions and electrons accelerated to the walls by the
transverse field of the ultrarelativistic beam.

S. Casalbuoni et al.: Beam heat load and pressure rise in a cold vacuum chamber; K. Zolotarev

et al., 2008
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Future work – Field error corrections

Field errors can influence the
trajectory in the wiggler and
therefore the minimum
emittance:

Quality of pole material

Persistent currents

Mechanical tolerances

⇒ Tolerances to be defined!
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Future work – Field error corrections

shim coilspole slice

Courtesy of Axel Bernhard/Daniel Wollmann

Mechanical shimming

Trajectory correction with integral correctors

Active shimming with local correction coils

Induction shimming
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Summary and conclusion

Short model shows technical feasibility of wiggler.

NbTi wiggler is able to fulfill magnetic requirements at
λ = 50mm (present CERN/Karlsruhe design: λ = 40mm).

Magnetic forces can be handled, stored magnetic energy is
very small compared to conventional dipole magnet.

Nb3Sn wiggler is less sensitive for beam heat load and can
generate higher magnetic fields.

At 13mm gap the period length for NbTi at 4.3 K is
50 mm, for Nb3Sn 34 mm.

Field quality requirements have to be defined ⇒

Mechanical tolerances.

Heat load has to be estimated and considered in the design.

Different NbTi and Nb3Sn wiggler designs will be tested at
CERN/Karlsruhe.
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Future work – Milestones

End 2009 Electromagnetic and mechanical design and
realisation of a NbTi model.

Mid 2010 Electromagnetic and mechanical design and
realisation of a Nb3Sn model.

Mid 2011 Design of a full scale prototype.

Mid 2012 Manufacturing & test of a full scale prototype.
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Thanks!
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