CLIC Workshop 2009

CLIC

Summary of WG2 Injectors and Damping Rings

Mark Palmer Cornell University

October 15th, 2009

Outline

Injectors

- Conveners:
 - Louis Rinolfi

CLIC

- Jim Clarke
- Alessandro Variola

- Damping RingsConveners:
 - Ioannis Papaphilippou
 - Susanna Guiducci
 - Mark Palmer

Electrons

Reliable load locked gun, High voltage; Ultra-high vacuum requirements; Cathode/anode optics Production of the full current with space charge and surface charge limits Photocathode high polarization; High Quantum Efficiency and Long life time Laser frequency, Pulse length and Pulse energy.

Positrons

- A single hybrid targets station or several stations to cover all the CLIC needs
- Devices for Undulator scheme (Helical undulator, collimators, dumps,...)
- Devices for Compton schemes (Optical cavities at IP, powerful laser systems,...)
- Targets issues (Heat load dynamics, beam energy deposition, shock waves, breakdown limits, activation,)
- Adiabatic Matching Device (AMD)
- Capture sections (Transport and collimation of large emittances, high beam loading)
- Trade off between yield, polarization and emittances
- Design and implementation of the spin rotators
- Polarization issues (Analyze systematic errors of polarization measurements)
- Efficient use of existing codes (EGS4, FLUKA, Geant4, PPS-Sim, Parmela, ...)
- Integration issues for the target station (remote handling in radioactive area)
- Radioactivity issue.

KEKB hybrid source experiment

-10

-5

0

5

Setup

T. Takahashi

Hybrid source optimization

CLIC Simulation

results

1	s(em)	d(m)	Yield.	P(kW)	Pedd (GeV/cm ³ /e ⁺)	Podd(J/g/train)
ľ	0.6	1.5	1.83	3.90	0.95	18.45
1	0.6	2.0	1.76	3.85	0.83	16.12
	0.6	2.5	1.70	2.70	0.71	11.50
1	0,6	- 3,0	1.66	3.65	0.64	13.43
ł	0.0	1.0.0	- 2.00	1.0.00	1.000	04 DO
ļ	0.8	2.0	1.91	0.00	1.00	15.42
i	0.8	2.5	1.87	6.40	0.87	16.90
ï	0,8	3.0	1.81	6.20	0.78	14.15
ł	1.0	1.5	2.01	10.05	1.37	26.60
ľ	1.0	2.0	1.87	9.80	1.14	22.14
ļ	1.0	2.5	1.91	9.60	1.00	15.42
ł	1.0	- 3.0	1.83	9.25	0.89	17,29
1	1.2		2.14	- latitu	1.41	2.38
	1.2	2.0	1.98	10,40	1.25	24.27
I	1.2	2.5	1.92	13.05	1.65	21.40
1	1.2	A.J.	1.86	12.65	0.96	18.65

If we are looking at the optimisation of the produced yield and take into account a safety factor of 50% on the PEDD limit

- 1. an incident electron energy of 5 GeV
- 2. a distance radiator-converter of 2 3 meters
- a converter thickness of 6 9 mm

O. Dadoun

Start to end results:

e+/e- yield	AMD yield	ACS yield	Total yield
~8.15	0.23	0.42	~ 0.8

Total yield e+/e-= 0.8 with Parmela i.e. with 7.5 10⁹ e- / bunch in front of crystal we get ~6. 10⁹ e+ / bunch at exit of accelerating section

F. Poirier

S	N. e ⁺	Yield	γε_x	γε_y	≺E>	σ _ε	σ _z	ε_z
cm		e⁺/e⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
38550	4558	0.76	19804	14729	2825.1	129.5	6.2	69.5

e⁺ in PDR: 2747

Yield $e^{+}/e^{-} = 0.458$

For e+ capture into the PDR

A. Vivoli

Bhabha polarimeter at 200 MeV

Detector

-10

8

6

4

-2

-0

-2

-4

0.25

q [rad]

0.2

asymmetry measurement with scattered electrons Energy range: 30 – 150 MeV

S. Riemann

CLIC Compton ERL

CLIC Undulator scheme

W. Gai

ANL simulations

Polarized e⁻ produced at SLAC

The total charge produced is a:

factor 3 above the CLIC requirement for 0.5 TeV and

factor 5 above the CLIC requirements for 3 TeV

QE ~ 0.5 - 0.7 %

The measured polarization is ~ 82 %

Major milestone

J. Sheppard

Polarized e⁻ at JLAB

To-do List for CLIC, ILC and JLab

- Demonstrate Higher Voltage > 100kV with new inverted gun
 - □ 200kV for CEBAF, 350kV for ILC
 - □ Field emission measurements, materials and polishing techniques
 - New gun design if necessary: reduce gradient where possible, symmetric design
- Cathode/Anode Design for large laser beam
 - Uniform emittance across beam profile
 - No beam loss
- Improve Vacuum
 - □ NEG/ion pump limitations
 - □ Gauges at -13 Torr
 - Cryopumping

PHIN results at CERN

PHIN = PHoto-INjector

_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	

Sur la route pour CLIC

	_	DRIVE BEAM			MAIN Beam
	Unit	CTF3 / PHIN [17]	с⊔с з Теү	CLIC Compton ring	C∐C 3 TeV
μ pulse charge	nC	(2.33)	(8.6)	9.3)	0.96
μ pulse width (FWHH)	ps	10	+2	100	700
peak current	Α	233	716	9.3	9.6
number of μ pulses	-	1908	92664	312	312
distance between μ pulses	ns	0.667	1.48	2.5	0.5
Macro pulse duration	ns	1272	140000	156	156
Macro pulse charge	nÇ	4446	796900	31/20	300

For CTF3 drive beam more powerful amplifiers can be added to the laser

For the Compton Ring 2 GHz oscillator is feasible – More powerful amplifiers to be designed

Laser Beam Electron Beam Pulse Length: 200 ns Energy: 5.512 MeV Energy: 80 µJ (per pulse) Charge: 1.28 nC Spot Size: 4 mm (knife edge (85%) simulation measured emittance (laser spot size = 4 mm) **1**90 195 200 210 215 220 225 230 235 205 240 Focusing Magnet Current (A)

Emittance Scan No:04 (17.03.09)

Transverse emittance scales with the laser spot size as expected from the PARMELA simulations. Values are ~6, 7 and 12 mm mrad for 2, 3 and 4 mm laser spots, at the energies of 5.7, 5.2 and 5.5 MeV, respectively.

O. Mete

M. Petrarca

For polarized e⁻, the SLAC major milestone confirms that the desired charge can be produced

For unpolarized e⁺, the present simulations based on hybrid targets and the KEKB experiment provide great confidence that we can reach the requested performance with a single target station

For polarized e⁺, all schemes (Compton Ring, Compton Linac, ERL, Undulator) a possible solution has been proposed but all schemes need strong R&D developments

The work performed by the international collaboration working on the CLIC Injector Complex has produced important progress and should be greatly acknowledged.

CLIC DR overview

- CLIC Y. Papaphilippou
 Energy increase to 2.86GeV in order to reduce collective effects (especially IBS)
- Lattice rationalisation

- Lower magnet strengths, larger drift spaces, comfortable DA, reduced IBS
- Super conducting wiggler remain major performance item
 - Modelling and prototyping is in good progress
- Impact of collective effects revised for new parameters (no surprises)
 - IBS tracking code developed
- RF design challenging (power source, beam loading)
 - □ Kicker ripple specifications are challenging
- Scaled design of existing DR achieves parameters for CLIC@500GeV
- Collaboration with ILC very fruitful
 - E-cloud simulations and measurements in CESR-TA

Lattice version	2007	2009		
Energy [GeV]	2.42	2.86		
Circumference [m]	365.21	493.05		
Coupling	0.00	13		
Energy loss/turn [Me]	3.86	5.8		
RF voltage [MV]	5.0	7.4		
Natural chromaticity x / y	-103 / -136	-149 / -79		
Compaction factor	8E-05	6e-5		
Damping time x / s [ms]	1.53 / 0.76	1.6 / 0.8		
Dynamic aperture x / y $[\sigma_{inj}]$	±3.5 / 6	±12 / 50		
Number of arc cells	100			
Number of wigglers	76	76		
Cell /dipole length [m]	1.729/0.545	2.30 / 0.4		
Bend field [T]	0.93	1.27		
Bend gradient [1/m ²]	0	-1.10		
Max. Quad. gradient [T/m]	220	60.3		
Max. Sext. strength [T/m ² 10 ³]	80	6.6		
Phase advance x / z	0.58 / 0.25	0.44/0.05		
Bunch population, [109]	4.1			
IBS growth factor	5.4	1.5		
Hor. Norm. Emittance [nm.rad]	470	370		
Ver. Norm. Emittance [nm.rad]	4.3	4.7		
Bunch length [mm]	1.4	1.4		
Longitudinal emittance [keVm]	3.5	3.8		

ILC DR overview

For the ILC DR main issue is e-cloud mitigation:

- different under experimental study and working group to make recommendations for the DR design
- ILC DR nominal vertical emittance (2pm) has been demonstrated at Diamond. R&D is needed:
 - to specify alignment tolerance and stability, and diagnostics requirements and to demonstrate low emittance at nominal current, taking into account collective effects
- For e-cloud and low emittance issues ILC and CLIC DR have common R&D objectives.
- Collaboration on some technical aspects of systems like wigglers, kickers, feedbacks could be useful.
- January 12-15 we will have a joint ILC/CLIC DR workshop

	ILC	CLIC
Energy (GeV)	5	2.9
Circumference (m)	3238	493
Bunch number	1300	312
N particles/bunch	2x10 ¹⁰	4.1x10 ⁹
Bunch distance (ns)	6.2	0.5
Average current (mA)	387	125
Bunch peak current (A)	25	21
Damping time τ_x (ms)	24	1.6
Emittance $\gamma \epsilon_x$ (nm)	5300	370
Emittance $\gamma \epsilon_x$ (nm)	20	4.7
Momentum compaction	1.3 x10 ⁻⁴	0.6 x10 ⁻⁴
Energy loss/turn (MeV)	4.4	5.8
Bunch length (mm)	6.0	1.4
RF Voltage (MV)	7.5	7.4
RF frequency (MHz)	650	2000
Natural chromaticity x/y	-100 / -63	-149 / -79

PDR design

F. Antoniou

Injected Parameters	e⁻	e ⁺
Bunch population [109]	4.4	6.4
Bunch length [mm]	1	10
Energy Spread [%]	0.1	8
Hor., Ver Norm. emittance [nm]	$100 \ge 10^3$	$7 \ge 10^{6}$

- Main challenge: Large input emittances especially (positrons) to be damped by orders of magnitude
 - Design optimization following analytical parameterization of TME cells
 - Detuning factor larger than 2 for minimum chromaticity
- Target emittance reached with the help of conventional high-field wigglers (PETRA3)
- Non linear optimization based on phase advance scan (minimization of resonance driving terms and tune-shift with amplitude)
 - PDR design ready for CDR

- BINP work on CLIC DR

- NbTi wiggler short prototype built and tested with limited performance
 - To be remeasured @ CERN for understanding limitations and decide on action plan
- Power absorption scheme established and being revised for new DR energy
- Lattice structure proposed and adopted
- New codes developed for nonlinear dynamics analysis including radiation damping and space charge
- Very important contributions of BINP to the DR design to be continued for the CDR and beyond

Wigglers effect with IBS

Operating temperature [K]

4.2

4.2

- Stronger wiggler fields and shorter wavelengths necessary to reach target emittance
- Two wiggler prototypes
 - □ 2.5T, 5cm period, built and currently tested by BINP
 - □ 2.8T, 4cm period, designed by CERN/Un. Karlsruhe
- A NbTi CERN short model fulfills the specifications
- More challenging wire technologies and wiggler designs are under studied at CERN and Univ. of Karlsruhe/ANKA but not yet tested.
- Final measurements from short prototypes to be expected for the CDR

Racetrack Wiggler Design

D. Schoerling

 Technical feasibility demonstrated on short model.

- NbTi wiggler is able to fulfill magnetic requirements at 50mm
- Magnetic forces can be handled, stored magnetic energy is small
- Nb₃Sn wiggler is less sensitive for beam heat load
- Different NbTi and Nb3Sn wiggler designs will be tested at CERN/Karlsruhe.

Forces on wire 1 to 5

Double-Helix Wiggler

Advantages of the double helix

S. Bettoni

- Less quantity of conductor needed
- Small forces on the heads
- Wire handling and winding (especially for Nb₃Sn) more tricky

tricky

- Analysis on the prototype:
 - Maximum force
 - Multipolar analysis
 - Tracking studies
 - Zeroing the integrals of motion
- Optimization of the long wiggler model is in progress

ILC kicker design

- DAFNE injection kickers, installed one year ago, work well and are very versatile devices.
- Used with both FID and old DAFNE pulsers and even as a feedback kicker!
- Reliability problems of the fast pulse generators by FID remain to be solved, (24kV units)
- A tapered stripline kicker for ATF has been designed and constructed.
- Some preliminary calculations and design considerations on the ILC kickers have been done

CLIC kickers

- 1. Beam coupling impedance issues will require the use of striplines, rather than ferrite
- 2. Short duration pulses (fast rise and fall) are advantageous for minimizing the total duration of the pulse. Hence a multi-cell inductive adder (presently in development for ILC) may be a good choice R&D
- 3. Stability of DR extraction kicker (0.015% reqd.) will be a significant challenge especially because of relatively long (160ns) pulse length. R&D
- A double kicker system relaxes the requirements for individual kickers, KEK-ATF achieved a factor of 3.3 reduction in kick jitter angle, wr.t. a single kicker: can this be improved upon? – R&D
- 5. Collaborate with ILC

Theoretical simulations ("ideal" switch):

Summary of Anti-e- Cloud 2009

- TiN coating seems good with photons in conditioned state (low photoyield?)
- SEY significantly reduced when surface strongly conditioned with ebeam
- a-C coating provides SEY < 1 (2h air exposure), and below 1.3 (7 months of air exposure)
- Strong reduction of e-cloud activity on a-C coated chambers in SPS and similar results in CesrTA
- Novel diagnostic of e-cloud with microwave measurements
- Grooves show significant reduction of e-cloud in PEPII, KEKB, and CesrTA

- •Many measurements on CesrTA are now available for validating models.
- •Models for coherent tune shifts have improved significantly
- •Comprehensive lattice analysis efforts are ongoing.
- •The wide variety of local RFA measurements and ring-averaged tune shift data are exceeding the ability of the simulators to keep up.
- •The three production runs of combined duration 100 days over the course of the coming year will greatly increase the experimental data for single and multi-bunch instabilities

— Intrabeam Scattering

A. Vivoli

- A new code to investigate IBS effect in the CLIC damping rings is being developed:
 - Benchmarking with conventional IBS theories gave good results.
 - Calculation of the evolution of emittances gives reliable results.
 - Presence of bugs in the calculation of the distributions, not due to the IBS routine.
 - Refinements of both IBS and quantum excitation routines will be implemented.
 - Improvements for faster calculation are being studied.
- A full simulation of the current DR lattice will be performed soon.

Collective effects in the DR

- Electron cloud in the e⁺ DR imposes limits in PEY (99.9% of synchrotron radiation absorbed in the wigglers) and SEY (below 1.3)
 - □ Cured with special chamber coatings
- Fast ion instability in e⁻ DR, molecules with A>13 will be trapped (constrains vacuum pressure to around 0.1nTorr)
- Other collective effects in DR

- □ Space charge (large vertical tune spread of 0.19 and 10% emittance growth)
- Single bunch instabilities avoided with smooth impedance design (a few Ohms in longitudinal and MOhms in transverse are acceptable for stability)
- Resistive wall coupled bunch controlled with feedback (1ms rise time calculated with headtail)
- Studies updated with newest parameter set
- 500GeV parameters do not present significant differences
 - Increased bunch charge compensated with higher output emittances

Chambers	РЕУ	SEY	ρ [10 ¹² e ⁻ /m ³]
	0.000576	1.3	0.04
Dinala	0.000576	1.8	2
Dipole	0.0576	1.3	7
		1.8	40
	0.00109	1.3	0.6
Wisslan	0.109	1.3	45
wiggier		1.5	70
		1.8	80

Conclusion

CLIC

Many thanks to all of the presenters

Special Announcement -

Low Emittance Rings 2010 January 12-15, 2010 Hosted by CERN

- A conference on low emittance lepton rings (including damping rings, test facilities for linear colliders, B-factories and electron storage rings)
- Discussions of common beam dynamics and technical issues
- Organized by the joint ILC/CLIC working group on damping rings
- Aimed at strengthening the collaboration within our community

Thank you for your attention!