

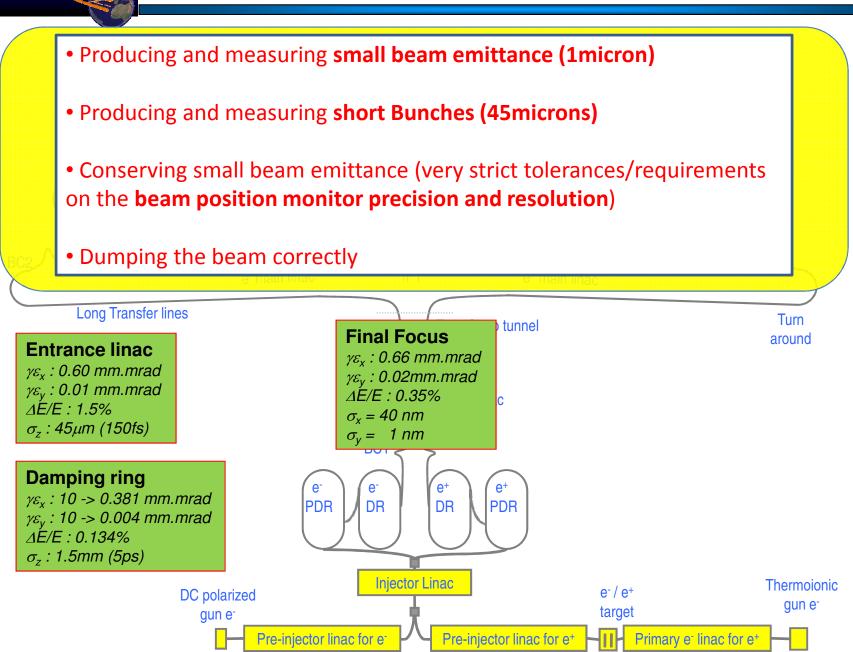
Summary of the BI Workshop

48 persons registered + few CERN colleagues CLIC, CTF3, ILC, 3rd and 4th generation light sources

Held on the 2nd and 3rd of June 2009 at CERN

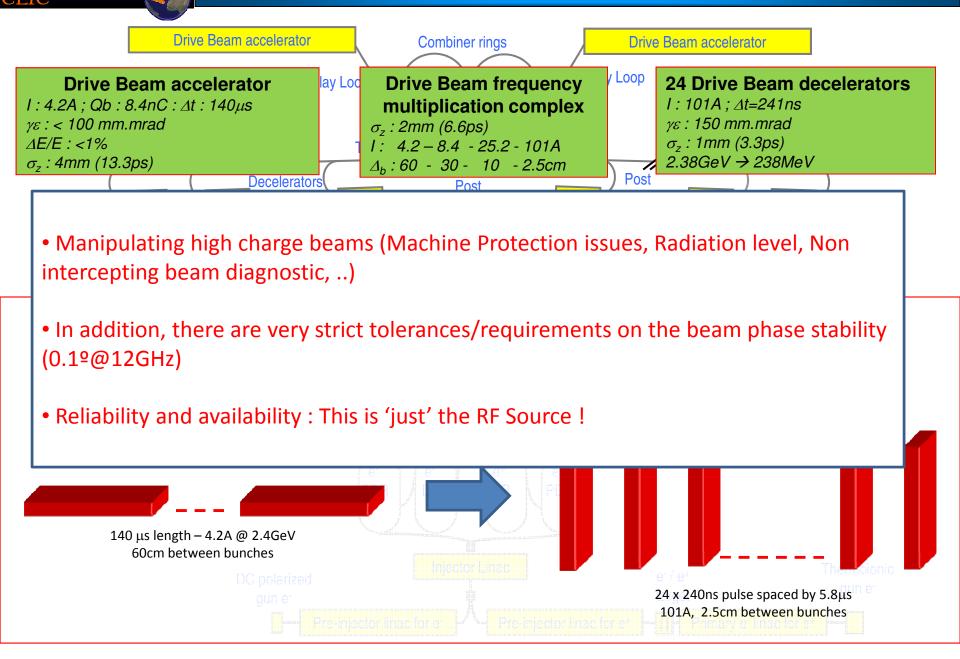
T. Lefevre, CERN BE/BI, CLIC Workshop 15th October 2009

CLIC

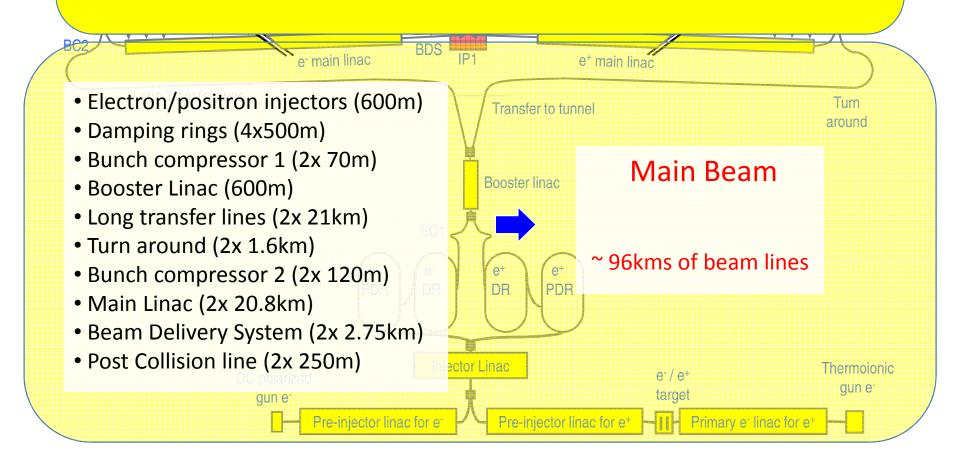

• Present an overview of CLIC beam instrumentation need and review their specifications : (8 talks : still few things to be discussed with BD)

 Present the status of the on-going R&D related to CLIC beam instrumentation : (17 talks covering most of the CLIC instrumentation)

 Review the list of critical items and discuss the R&D required for proof of principle (3h Discussion session)


 Organize the work for completion of the CLIC Conceptual Design Report with a cost estimate by the end of 2010 (follow-up on collaborations – MoU in preparation)

Challenges for CLIC Drive Beam



CLIC 3TeV

CLIC RF source

Parameter specifications

Instrument	Accuracy	Resolution	Bandwidth	Beam tube aperture	Stability	Non-intercepting device?	How many?	Used in RT Feedback?	Machine protection ?
Intensity									
Position									
Beam Size / Emittance									
Energy									
Energy Spread		Summer 2008 - List of instruments for each sub-systems							
Bunch Length									
Beam Loss									
Beam Halo									
Beam Phase									
Beam Polarization									
Luminosity									
Wakefield monitor									

• Get an overview of the beam instrumentation (identify what was not studied)

• Identify the critical items in each of the 44 sub-systems: (feasibility, cost, performance)

Dynamic range ? / non-intercepting device ? / Can it be done by a single instrument ?

CLIC 3TeV – Numbers of devices

/				
	Instrument	N ^o Devices		
	Intensity	386		
	Position	49520	Drive Beam	
	Beam Size	798		
	Energy	166		
	Energy Spread	166	54580 devices	
	Bunch Length	384		
	Beam Loss/Halo	2968		
	Be	400		
	Still some cha	anges to e	expect:	

- Design is not completely frozen yet
- Machine Protection system study started recently
- Requirements on reliability not specified yet

Instrument	IN DEVICES
Intensity	311
Position	7579
Beam Size / Emittance	143
Energy	75
Energy Spread	23
Bunch Length	26
Beam Loss/Halo	4
Beam Polarization	23
Tune	8
Beam Phase	96
Luminosity	4
Wakefield monitor	142812

Main Beam

8292 devices + 142812 wakefield monitors

From 500GeV to 3TeV

	Main Beam	Main Bea	m Tunnel	Main Beam Total	
Instrument	injector	500GeV	3TeV	500GeV	3TeV
Intensity	225	15	86	240	311
Position	1539	1860	6040	3399	7579
Beam Size	35	52	108	87	143
Energy	19	16	56	35	75
Energy Spread	19	4	4	23	23
Bunch Length	20	6	6	26	26
Beam Loss/Halo	4	0	0	4	4
Beam Polarization	19	4	4	23	23
Tune	8	0	0	8	8
Beam Phase	0	16	96	16	96
Luminosity	0	4	4	4	4
Total	1888	1977	6404	3865	8292
Wakefield	0	23802	142812	23802	142812
monitor					

CLIC

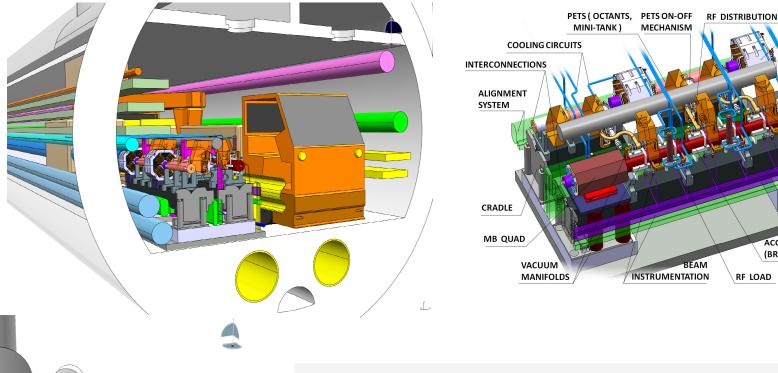
Instrument	Drive Beam injector	Drive Beam Tunnel		Drive Beam Total	
		500GeV	3TeV	500GeV	3TeV
Intensity	25/50	56	336	81	386
Position	898/1796	7954	47724	8852	49520
Beam Size	15/30	128	768	143	798
Energy	11/22	24	144	35	166
Energy Spread	11/22	24	144	35	166
Bunch Length	24/48	56	336	80	384
Beam Loss/Halo	284/568	400	2400	684	2968
Beam Phase	20/40	32	192	52	232
Total	1288/2576	8674	52044	9962	54620

96-98% of the instrumentation will be in the tunnel

CLIC Tunnel

DB QUAD

DB


MB

CMF

GIRDER

ACCELER. STRUCTURE (BRAZED DISKS)

RF LOAD

Design is well advanced but ...

- Where to install the electronic ? Issue on radiation?
- Specific needs Optical/laser system

Courtesy of J. Osborne and A. Samoshkin

Collaboration with RHUL & Oxford

- Very tight requirements for measuring micrometer beam size, 40-75microns short bunch length and beam position with a 50nm resolution

Collaboration with U. Dundee, PSI & RHUL

Collaboration with Fermilab, CEA/Saclay, RHUL

- Need to study the Machine Protection System for both the Drive and Main beams and to develop a Beam loss monitoring system along the CLIC linac (both beams)

Collaboration with U. Liverpool

- Reliability and availability of roughly 5000 high resolution BPM's, 40000 BPM's for the Drive Beam Decelerator and 142812 Wakefield monitors, (+ beam loss monitors)

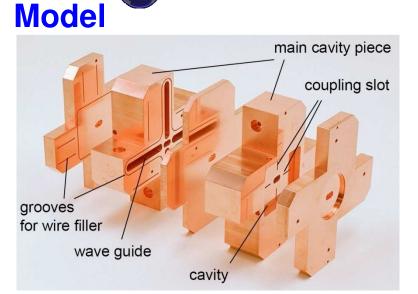
Activity covered by the RF Group - Collaboration with CEA & PSI

- Beam **synchronization** implies a **0.1deg at 12GHz phase measurement** with an adequate feed-forward system

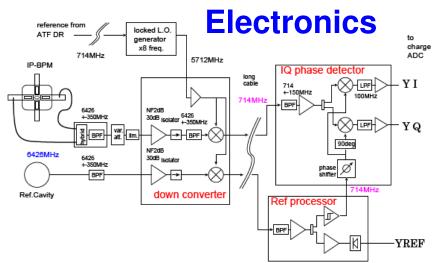
Activity covered by RF group – FP7 – NCL activities

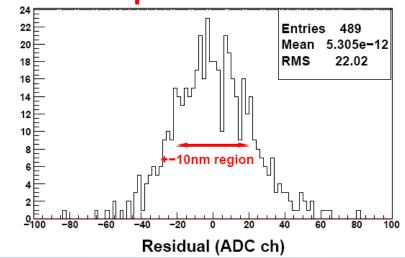
Working group 5

- Laser wire scanner development: Talk by Lawrence Deacon
- Longitudinal bunch profile: Talk by Allan Gillespie
- Machine Protection System: Talk by Michel Jonker
- Beam loss monitoring system: Talk by Mariusz Sapinski
- 40000 Drive Beam BPM's: Talk by Lars Soby
- Precise phase measurement: talk by Alexandra Andersson
- Test Facilities
 - ATF2 by Toshiyuki Okugi Covering low emittance instruments (Damping rings & ML & BDS)


- CTF3 by Anne Dabrowski – Covering a collection Drive & Main Beam injector complex instruments

Beam Position Measurements with a 50nm resolution and adequate time resolution




Characteristics

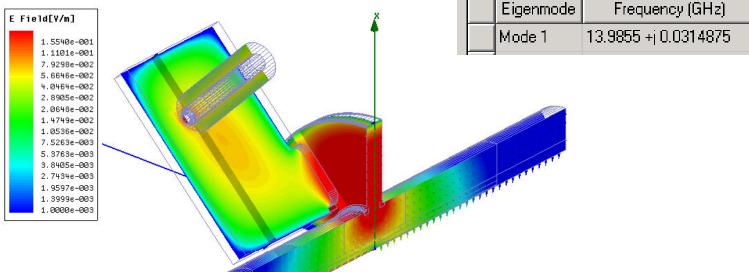
- Narrow gap to be insensitive to the beam angle.
- Small aperture (beam tube) to keep the sensitivity.
- Separation of x and y signal. (Rectangular cavity)
- Double stage homodyne down converter.

 Design parameters								
Port $f(GHz)$ β Q_0 Q_{ext}								
 X	5.712	1.4	5300	3901				
 Y	6.426	2	4900	2442				

Results 15 nm position resolution!

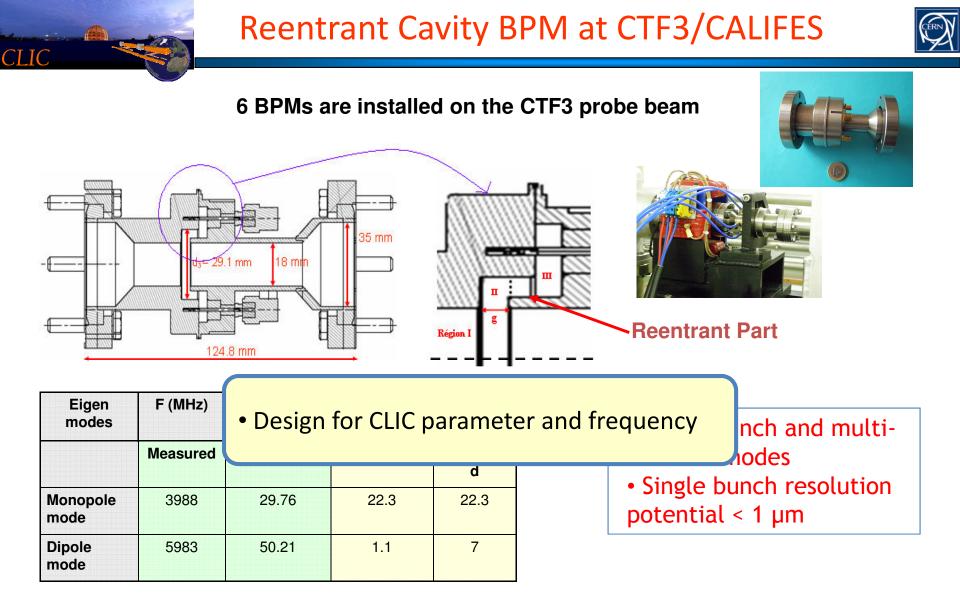
CL IC

ATF Collaboration : SLAC, KNU, PAL, KEK, JAI, UCL


Cavity BPM @ FERMILAB

Q

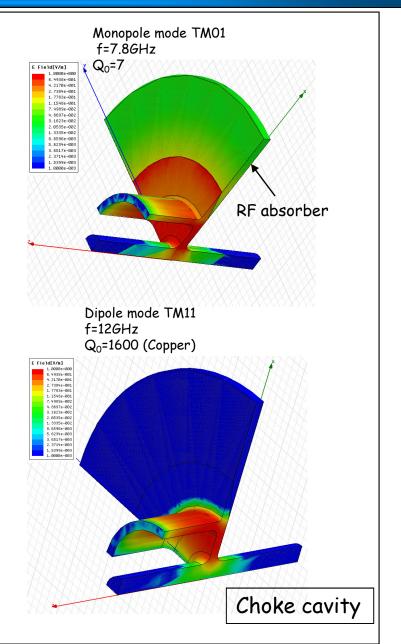
222.081



• Work in progress - Design finalized by October 2009 – Prototype 2010 ?

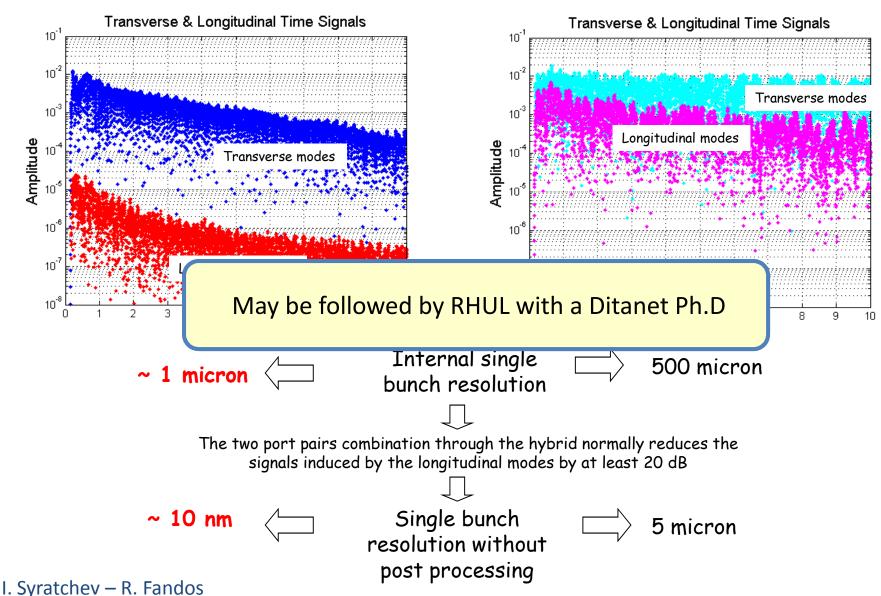
Design of Low-Q low cost cavity BPM (stainless steel)

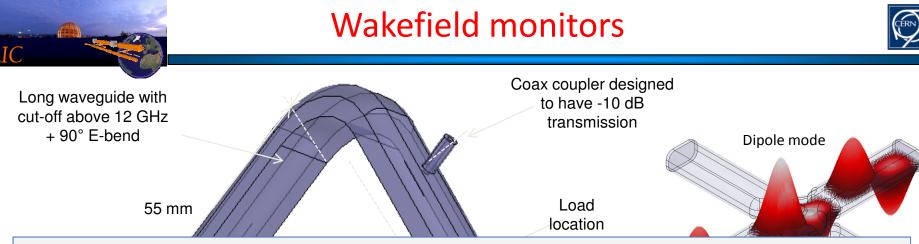
CLIC



'yet another high resolution BPM'

CLIC

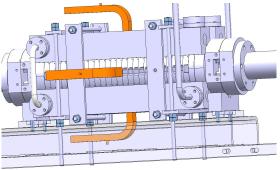

'yet another high resolution BPM'



Choke BPM

ШC

Slotted cavity BPM



➢ Step 1 (2009 - 2010): build one WFM prototype and integrate it into a CERN structure and test on TBTS with CALIFES probe beam

Step 2 (2010 - 2011): build 2 or 3 structures fully instrumented and test on TBTS + CALIFES

- Cell equipped with WFM must <u>still provide strong damping</u> (SiC loads)
- Cheap and as simple as possible

- Micron precision for CLIC Main Beam (from DR to BDS)
 - Laser Wire Scanner in Linacs (*limit for OTR to be investigated?*)
 - Synchrotron light in Damping Ring (interferometery or π polarisation technique)
- Non-intercepting devices for the CLIC Drive Beam (injector complex)
 - Laser Wire Scanner, Quadrupolar pick-up (resolution ?), Gas/neutral beam scanner,...
 - Synchrotron light in rings

• Longitudinal profile monitor in Bunch compressors and BDS with high resolution (30fs)

- RF Deflecting cavity
- E-O Optics techniques
- Optical Repliqua Technique
- Bunch Form factor measurements
 - DB decelerator for RF production efficiency verification
 - : 300fs resolution
 - MB for feedback : 30fs resolution

CLIC

Post collision line

Post collision line

A.Ferrari, V. Ziemann E. Gschwendtner – A. Apyan

Talk by Edda on wednesday in working group 2

Complex and non-standard beam line

- Luminosity monitors based on beamstrahlung photons detection
- Intensity monitors
- Interferometric dump thermometer
- Tails monitors and/or instrumented collimators

- Electronic Standardisation
 - Single type of digital electronics acquisition card used for the majority of LHC instruments

Follow similar concept for CLIC

- <u>Elimination of cables</u>
- <u>Standardized Digital Acquisition on local crate with single connection via</u> <u>synchronous ethernet for timing/clock (White Rabbit – BE/CO - Javier</u> <u>Serrano)</u>
- <u>– Radiation hardness ?</u>

S. Vilalte, J. Jacquemier, Y. Karyotakis, J. Nappa, P. Poulier, J. Tassan

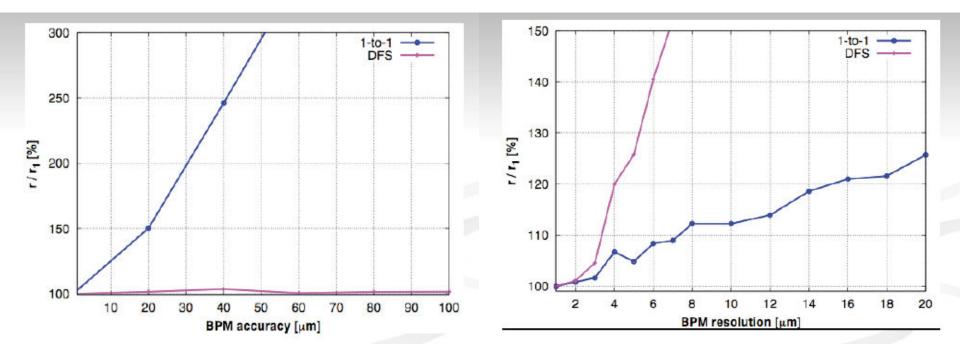
Tasks : for every type of instruments

1. Collect the beam instrumentation requirements for each CLIC sub-systems : Parameter specifications

1. Technology choice

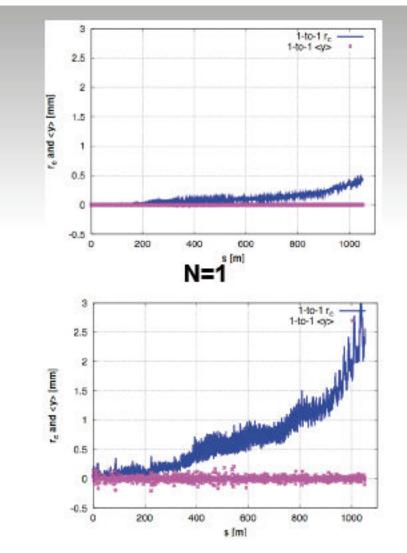
CLIC

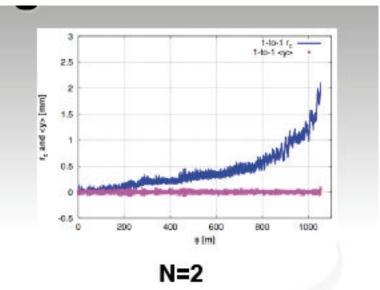
- 1. Evaluate the performance of already-existing technologies (CTF3, ILC, light source)
- 2. Perform R&D when necessary : on-going
- 3. Choose technology : CDR Conceptual specifications (PBS Level 5)
- 4. External limitations : Machine Operation, Machine protection, Radiation damage, Availability, Reliability, Maintainability : Functional specifications (PBS Level 5)
- 5. Define needs for Mechanic, Electronic, Cabling, Acquisition, Optic, ...
- 6. Technical specifications
- 2. Cost estimate
 - 1. Estimate the Driving part of the cost for every instrument
 - 2. Performance vs cost (How much do we gain for relaxed performance ?)
 - Number vs cost (How much do we gain going to mass production ? Factor 2, 10, ~number of equipment)
 - 4. Technical specifications
- 3. Engineering specifications and production : This is for the TDR phase

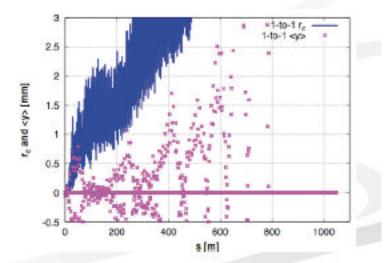

Huge amount of Work before the CDR in 2010 with a realistic cost estimate

Reducing the Performance ?

CLIC

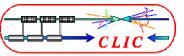

Simulation by E. Adli on DB decelerator performance


Reducing the Numbers of devices



Simulation by E. Adli on DB decelerator performance

CLIC



N=4

N=3

- Specifications for BI in rather good shape:
 - Waiting for specifications for beam loss monitoring
 - CLIC Layout will be frozen by the end of this year
- For all demands technical solutions exist (within a factor 2...3)
 - Complex and non standard Post-collision beam line not studied in details yet
 - High number of instruments: reliability and availability ?
- Cost optimization and prototyping (this will be the main activity in the 2011 – 2016 CLIC TDR phase)
 - Simplicity if applicable (not always compatible with tight tolerances)
 - Standardization (detectors, electronics) is a key concept
 - Gain in Mass production ?

- Development on Beam loss monitors : No specification so far
 - Recent collaboration with **University of Liverpoo**l Cockcroft Institute for Beam loss detection technique based on Optical fiber
 - Recent collaboration with Greece : Students for beam loss shower simulations
 - **CLIC Project Associate** (Mariuzs Sapinski) starting in Oct 2009.
- Development of micrometer beam size monitor

- **JAI-RHUL** and **Oxford University** colleagues involved in ATF2/PETRA laser wire scanner program 1 micron accuracy to be demonstrated (current achievement 2-3 microns) Study the use of LWS for the Drive Beam Complex (easy for top energ but optimize the design for a cheap solution)

- Development of short bunch length monitoring techniques
 - INFN-Frascati for RF deflector techniques : Longitudinal Profile but limited to low energy (and expensive)
 - University of Dundee for Electro-optics techniques : Longitudinal Profile
 - resolution to be studied @ Flash/LCLS (current status 20fs)
 - Northwestern University using RF pick-up techniques: Form Factor for DB complex : Test resolution in TBL
 - JAI-RHUL for Coherent Diffraction radiation techniques: Form factor for DB/MB complex : Test resolution in TBL
- Development of Beam Position Monitors
 - FNAL collaboration for 50nm resolution BPM : Low cost Cavity BPM
 - CEA/IRFU for re-entrant cavity BPM
 - CLIC Project Associate (Steve Smith from SLAC) for one year : Work on DB Decelerator BPM
 - JAI-RHUL for BPM development : 1 Ph.D student and few staff part time : Choke type Cavity BPM /Wakefield monitor ?
 - IFIC Valencia for Drive Beam Decelerator : Scale CTF3 Inductive BPM to CLIC Needs
 - INFN-Frascati for Drive Beam delay loop and combiner rings : Not really active at the moment
- Development of Wakefield monitors by CEA/IRFU (Frank Peauger) Would need help from RHUL maybe ?
- Development of emittance and energy spread measurement devices with **PSI**
- Development of post collision line monitor (luminosity monitor) by Uppsala university
 - Need for a CLIC Project Associate ?
- Beam synchronization implies a 0.1deg at 12GHz phase measurement with an adequate feed-forward system Activity not follow-up by the BI group (RF group and FP7-Eurocard/NCL)

- **Electronic development** for **Large distributed systems**: Need to prepare specifications to be included withtin a global standardization effort (module)

- LAPP for the acquisition system (rad-hard analog and digital solutions)
- University Politecnica de Catalunya for rad-hard analog electronic

• RHUL

- Continue the work on LWS and short bunch length monitoring
- Start working on Wakefield monitor and/or Choke Cavity BPM

• FNAL

• Lost cost low-Q cavity BPM : Money / MoU?

• CEA :

- The design of re-entrant cavity for the CLIC Main linac (low-Q, high bandwidth)
- Help for Wakefield monitor design

• ESRF :

• Expertise of PDR & DR instrumentation

• University of Dundee / PSI

• E-O optics sampling : Revised specifications / collaboration in preparation