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Motivation for use in light sources

= Next-generation light sources (e.g., DESY) will generate few-fs x-ray pulses
= X-rays and lasers must be synchronized at a level shorter than pulse duration.

= Precision required (few fs over several km) is beyond RF-distribution capabilities.
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An ongoing effort dating back to ~2005

= DESY: FLA Group

= Holger Schlarb, Bernhard Schmidt, Peter Schmuser,
= Axel Winter, Florian Lohl, Frank Ludwig, Matthias Felber and others ...
= Talk by Felber at 12:00 describes the DESY system in detalil.

= Prof. Franz Kartner's Group @ MIT

= Jeff Chen, Jung-Won Kim, ...

= Many other contributors...




Motivation for applying optical sync to a particle collider

= At the collision point, the arrival time of the particles must be precisely controlled to
locate the collision point right in the center of the detector module.

= About 10 fs variation in arrival time corresponds to 30 um shift of the collision point.
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Optical Synchronization Scheme




Synchronization system layout
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Synchronization system layout
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Optical Synchronization Scheme:

1 - Highly stable reference

2 - Optical master oscillator
3 - Conversion to RF

4 - Timing stabilized fiber links




Extremely stable microwave/RF oscillators exist
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Optical Synchronization Scheme:
1 - Highly stable reference

2 - Optical master oscillator

3 - Conversion to RF

4 - Timing stabilized fiber links




Robust, low-noise mode-locked laser

= Internal timing jitter of the master laser has to be absolutely minimal

= Passively mode-locked lasers offer excellent high-frequency (short-term)
stability

= Er-doped fiber lasers:

= sub-100 fs to few ps pulse duration

= 1560 nm wavelength - use telecom components
= reliable, weeks-long uninterrupted operation

= can use multiple lasers for redundancy




Mini-tutorial on Mode-locking

Mode-locked operation is self-initiated from noise fluctuations:
= A saturable absorber (SA) imposes lower loss to higher power

= A noise spike is shortened and grown roundtrip after roundtrip...

ro. SA
f 2 kak— SA —
A7)

= Main principle:

= let the pulse shape itself

= create conditions a priori such that the laser dynamics naturally
produce pulses




Mini-tutorial on Mode-locking

= Extremely rich interplay of four effects:

/ nonlinearity \
gain dispersion
\ Saturable /
absorber (SA)

= Various distinct types of mode-locking mechanisms exist:
= Soliton-like
= Stretched-pulse (dispersion-managed)
= Self-similar (similariton)
= All-normal dispersion

= Soliton-similariton




Mini-tutorial on Mode-locking

= Propagation of pulses is modeled by nonlinear equations:
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An Er-doped fiber laser (EDFL)




Optical Synchronization Scheme:
1 - Highly stable reference
2 - Optical master oscillator

3 - Conversion to RF

4 - Timing stabilized fiber links




Direct detection to extract RF from pulse train

photodiode
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Amplitude-to-phase conversion introduces excess timing jitter.
Simple, low-cost, but limited to < 10 fs in practice

complexity...



Optical Synchronization Scheme:
1 - Highly stable reference

2 - Optical master oscillator

3 - Conversion to RF

4 - Timing stabilized fiber links




Timing-stabilized fiber links
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Additional Applications of the Optical
Synchronization System




Direct seeding of other laser systems

E.g., seed a Ti:sapphire amplifier after pulse shaping/amplification via
second-harmonic generation from 1550 nm to 775 nm
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Electron beam diagnostics

= Special fiber laser developed at Bilkent

for electron beam diagnostics
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Overview

= This approach has several basic advantages & side benefits.

= Distributing short pulses allows their direct use: beam diagnaotics,
seeding of powerful lasers, ...

= Proof-of-principles have been made at DESY: the physics is sound

= With current approaches, 1-10 fs is achievable (over few km).

= Many engineering challenges exist...

= Full implementation corresponds to a complex system.




Looking ahead for CLIC:

What will be the new challenges?




A new challenge: vast distances & causality

= The primary difference is the much longer distances;

= CLIC may require sync over distances > 35 km; major difference!

= Signal roundtrip time is ~0.4 ms — no feedback can act faster (causality)
= New approaches will be necessary...
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A brute force solution: divide and conquer

= Multiple stations with individual master oscillators and mutual links can
form a chain, covering the full distance in several steps.

= However, errors add up and complexity increases further.
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Optical frequency combs and optical clocks

= The full frequency comb produced by a mode-locked laser has only two
parameters: repetition rate and the offset frequency.
= Fixing the two (fz & f4) Yields a completely stabilized frequency comb.

= Nobel Prize in Physics 2005; explosive growth of the field since then.

| Fourier
transformation




How about using an optic-atomic clock?

= Laser frequency combs locked to a precise quantum transition, can be
absolutely stable

= Position one at each major point, distribute sync signal locally as before.
= Use long links to keep each clock locked to each other (slow corrections)
= Distribution of frequencies with 10-4 precision has been demonstrated.
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Collaboration w/ Dr. Hamid @ National Metrology Institute

= To develop transportable and robust frequency standards based on fiber
lasers locked to optical/atomic transitions

= Locking to Cs atomic clock accomplished with very robustness.

= [ ab at UME where our laser was locked to the Cs atomic clock:




Locking a Yb-fiber laser to the Cs atomic clock (rep rate only)
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Allan deviation characterization of the stability
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Summary and outlook

= QOptical synchronization over ~1 km with fs resolution has been
demonstrated at DESY.

= Various variations of the approach are possible. Basic idea: encode
timing information into an optical signal and distribute via optical cables.

= This approach also allows to integrate various lasers systems (e.g.,
photoinjector laser)

= Application to very large distances as in CLIC pose new, exciting
challenges.

= There is rapid progress in fiber laser-based optical frequency metrology

= So far, stabilized frequency combs and optical-atomic clocks have not
been considered. New approaches suited to CLIC’s challenges are
possible.




Fs fiber lasers are great tools, with many ongoing applications

= High-energy, compact. all-fiber lasers:

= Nanoscale material processing

= Femtosecond nanosurgery:
= Femtosecond pulsed
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