

Long-distance optical stabilization with femtosecond resolution

F. Ömer İlday

Physics Department

Bilkent Üniversitesi

Motivation for use in light sources

- Next-generation light sources (e.g., DESY) will generate few-fs x-ray pulses
- X-rays and lasers must be synchronized at a level shorter than pulse duration.
- Precision required (few fs over several km) is beyond RF-distribution capabilities.

3.5 km

An ongoing effort dating back to ~2005

- DESY: FLA Group
 - Holger Schlarb, Bernhard Schmidt, Peter Schmüser,
 - Axel Winter, Florian Löhl, Frank Ludwig, Matthias Felber and others ...
 - Talk by Felber at 12:00 describes the DESY system in detail.
- Prof. Franz Kärtner's Group @ MIT
 - Jeff Chen, Jung-Won Kim, ...
- Many other contributors...

Motivation for applying optical sync to a particle collider

- At the collision point, the arrival time of the particles must be precisely controlled to locate the collision point right in the center of the detector module.
- About 10 fs variation in arrival time corresponds to 30 µm shift of the collision point.

Optical Synchronization Scheme

Optical Synchronization Scheme:

- 1 Highly stable reference
- 2 Optical master oscillator
- 3 Conversion to RF
- 4 Timing stabilized fiber links

Extremely stable microwave/RF oscillators exist

Timing jitter:

$$\Delta t_{rms} = \frac{\sqrt{2\int_{f_1}^{f_2} L(f)df}}{2\pi f_0}$$
 < 6fs

Optical Synchronization Scheme:

- 1 Highly stable reference
- 2 Optical master oscillator
- 3 Conversion to RF
- 4 Timing stabilized fiber links

Robust, low-noise mode-locked laser

- Internal timing jitter of the master laser has to be absolutely minimal
- Passively mode-locked lasers offer excellent high-frequency (short-term) stability
- Er-doped fiber lasers:
 - sub-100 fs to few ps pulse duration
 - 1560 nm wavelength use telecom components
 - reliable, weeks-long uninterrupted operation
 - can use multiple lasers for redundancy

Mini-tutorial on Mode-locking

Mode-locked operation is self-initiated from noise fluctuations:

- A saturable absorber (SA) imposes lower loss to higher power
- A noise spike is shortened and grown roundtrip after roundtrip...

- Main principle:
 - let the pulse shape itself
 - create conditions a priori such that the laser dynamics naturally produce pulses

Mini-tutorial on Mode-locking

Extremely rich interplay of four effects:

- Various distinct types of mode-locking mechanisms exist:
 - Soliton-like
 - Stretched-pulse (dispersion-managed)
 - Self-similar (similariton)
 - All-normal dispersion
 - Soliton-similariton

Mini-tutorial on Mode-locking

Propagation of pulses is modeled by nonlinear equations:

An Er-doped fiber laser (EDFL)

Optical Synchronization Scheme:

- 1 Highly stable reference
- 2 Optical master oscillator
- 3 Conversion to RF
- 4 Timing stabilized fiber links

Direct detection to extract RF from pulse train

Amplitude-to-phase conversion introduces excess timing jitter. Simple, low-cost, but limited to ≤ 10 fs in practice

Advanced schemes for extracting the RF are available at increased complexity...

Optical Synchronization Scheme:

- 1 Highly stable reference
- 2 Optical master oscillator
- 3 Conversion to RF
- 4 Timing stabilized fiber links

Timing-stabilized fiber links

Assuming no fiber length fluctuations faster than T = 2nL/c. for L = 1 km, n = 1.5 => T = 10 µs, $f_{max} = 100$ kHz

Additional Applications of the Optical Synchronization System

Direct seeding of other laser systems

E.g., seed a Ti:sapphire amplifier after pulse shaping/amplification via second-harmonic generation from 1550 nm to 775 nm

Electron beam diagnostics

Overview

- This approach has several basic advantages & side benefits.
- Distributing short pulses allows their direct use: beam diagnotics, seeding of powerful lasers, ...
- Proof-of-principles have been made at DESY: the physics is sound
- With current approaches, 1-10 fs is achievable (over few km).

- Many engineering challenges exist...
- Full implementation corresponds to a complex system.

Looking ahead for CLIC:

What will be the new challenges?

A new challenge: vast distances & causality

- The primary difference is the much longer distances;
- CLIC may require sync over distances > 35 km; major difference!
- Signal roundtrip time is ~0.4 ms no feedback can act faster (causality)
- New approaches will be necessary...

A brute force solution: divide and conquer

- Multiple stations with individual master oscillators and mutual links can form a chain, covering the full distance in several steps.
- However, errors add up and complexity increases further.

Optical frequency combs and optical clocks

- The full frequency comb produced by a mode-locked laser has only two parameters: repetition rate and the offset frequency.
- Fixing the two $(f_R \& f_{offset})$ yields a completely stabilized frequency comb.
- Nobel Prize in Physics 2005; explosive growth of the field since then.

How about using an optic-atomic clock?

- Laser frequency combs locked to a precise quantum transition, can be absolutely stable
- Position one at each major point, distribute sync signal locally as before.
- Use long links to keep each clock locked to each other (slow corrections)
- Distribution of frequencies with 10⁻¹⁴ precision has been demonstrated.

Collaboration w/ Dr. Hamid @ National Metrology Institute

- To develop transportable and robust frequency standards based on fiber lasers locked to optical/atomic transitions
- Locking to Cs atomic clock accomplished with very robustness.
- Lab at UME where our laser was locked to the Cs atomic clock:

Locking a Yb-fiber laser to the Cs atomic clock (rep rate only)

Allan deviation characterization of the stability

Summary and outlook

- Optical synchronization over ~1 km with fs resolution has been demonstrated at DESY.
- Various variations of the approach are possible. Basic idea: encode timing information into an optical signal and distribute via optical cables.
- This approach also allows to integrate various lasers systems (e.g., photoinjector laser)
- Application to very large distances as in CLIC pose new, exciting challenges.
- There is rapid progress in fiber laser-based optical frequency metrology
- So far, stabilized frequency combs and optical-atomic clocks have not been considered. New approaches suited to CLIC's challenges are possible.

Fs fiber lasers are great tools, with many ongoing applications

- High-energy, compact. all-fiber lasers:
- Nanoscale material processing

Femtosecond nanosurgery:

Femtosecond pulsed

laser deposition:

Controlled surface texturing:

