Electro-optic Longitudinal Profile Diagnostics

current status & future directions

S P Jamison

Accelerator Science and Technology Centre, STFC Daresbury Laboratory

Collaborators:

- W.A. Gillespie University of Dundee
- A.M. MacLeod, University of Abertay Dundee
- G. Berden, B. Redlich, A.F.G. van der Meer (FELIX)
- B. Steffen, E.-A. Knabbe, H. Schlarb, B. Schmidt, P. Schmüser (DESY)

Electro-optic techniques...

Concept of electro optic profile diagnostic

all-optical intra-beamline pickup of bunch Coulomb field

Encoding

- same for all techniques
- limiting factor for high time resolution techniques

Decoding

- choices for complexity
- limiting factor for spectral decoding

Spectral decoding temporal resolution limits...

In general spectral decoding limited by chirp $\tau_{\rm lim} = \sqrt{12\pi\beta}$

For specific laser profiles, can relate to FWHM durations...

 $\tau_{\rm lim} = 2.61 \sqrt{T_0 T_c}$; for a Gaussian pulse

Science & Technology Facilities Council

Temporal decoding...

temporal-spatial mapping in 2nd Harmonic Generation

Temporal profile of probe pulse \Rightarrow Spatial image of 2nd harmonic

Time resolution set by gate pulse duration (typically <50fs)

High Time Resolution...

currently the highest time-resolution non-destructive diagnostic demonstrated

Concept could be used for checking CLIC/CTF3 bunch stacking?

EO confirmation of CDR feedback systems

single shot capability reveals stabilising effect of slow feedback

Benchmarking of Electro-Optic Monitors for Femtosecond Electron Bunches

G. Berden,¹ W. A. Gillespie,² S. P. Jamison,³ E.-A. Knabbe,⁴ A. M. MacLeod,⁵ A. F. G. van der Meer,¹ P. J. Phillips,² H. Schlarb,⁴ B. Schmidt,⁴ P. Schmüser,⁴ and B. Steffen⁴

plus Phys. Rev. ST, 2009

So are all problems solved...?

Low time resolution (>1ps structure)

- spectral decoding offers explicit temporal characterisation
- relatively robust laser systems available
- diagnostic rep rate only limited by optical cameras

High time resolution (>60 fs rms structure)

- proven capability
- significant issues with laser complexity /robustness

Very higher time resolution (<60 fs rms structure) Iimited by EO material properties (& laser)

Encoding Time Resolution... material response, R(ω)

- velocity mismatch of Coulomb field and probe laser
- frequency mixing efficiency, $\chi^{(2)}(\omega)$

Time resolution from frequency response

- Encoding "time resolution" not a RMS measure...
- Better described as "temporal limitation"
- structure on longer time scale recorded faithfully
- short time scale structure not observed, PLUS ringing artefacts

Can we achieve even better resolution ...?

Detector Material:

- GaP
- Move to new material? (phase matching, $\chi^{(2)}$ considerations)
- Could use GaSe, DAST, MBANP or poled organic polymers?
- use multiple crystals, and reconstruction process

Decoding

Gate pulse width ~ 50 fs

- Introduce shorter pulse
- Use spectral interferometry
- Use FROG Measurement (initially attempted at FELIX, 2004)

or Alternative techniques: spectral upconversion

If drop requirement explicit time information at high frequencies, other options also become available

Spectral upconversion diagnostic

Spectral upconversion diagnostic

Aim to measure the bunch Fourier spectrum...

- ... accepting loss of phase information & explicit temporal information
- ... gaining potential for determining information on even shorter structure

... gaining measurement simplicity

use long pulse, narrow band, probe laser

$$\tilde{E}_{\text{out}}^{\text{opt}}(\omega) = \tilde{E}_{\text{in}}^{\text{opt}}(\omega) + i\omega a \tilde{E}_{\text{in}}^{\text{opt}}(\omega) * \left[\tilde{E}^{\text{Coul}}(\omega)\tilde{R}(\omega)\right]$$

$$\longrightarrow \delta\text{-function}$$

- laser complexity reduced, reliability increased
- laser transport becomes trivial (fibre)
- problematic artifacts of spectral decoding become solution

NOTE: the long probe is still converted to optical replica

Spectral upconversion diagnostic

Results from experiments at FELIX (Feb 2009)

and optical replica present if choose to measure it

What's different...?

Spectral decoding & Temporal decoding

issues of

- laser transport
- laser complexity/expense/reliability
- material effects (e.g. group velocity dispersion)

Important: can measure non-propagating long wavelength components not accessible to radiative techniques (CSR/CTR/SP)

Spectral upconversion

laser bandwidth

bunch spectral extent

low power, 'simple' lasers OK fibre transport now an option simple – linear – spectral detection *without artefacts of spectral decoding*

In Summary ...

- Proven capability for explicit temporal chractrisation up to ~100 fs RMS electron bunch structure
- high time resolution techniques have problems with reliability & necessary infrastructure...
- ...but avenues available for improving time resolution & robustness (dependent on beam diagnostic requirements)
- For high time resolution, both alternative materials & spectral upconversion under investigation

EO Formalism: Electro-optic effect as sum- and difference-frequency mixing

Electro-optic measurements of FEL radiation single-shot measurement of THz electric field oscillations

Encoping Time Resolution... material response, R(ω)

Uniform response <8THz (λ >40 μ m)

 \Rightarrow Faithful reproduction of > 150 fs (FWHM) bunches

ALICE.... (formerly ERLP) Accelerator and Lasers in Combined Experiments

- expect rapid commissioning of accelerator to follow..
- aiming for EO station up and running in December

High field effects...

"Standard" theory of EO measurement does not apply for very strong fields

Standard description...

Coulomb field induces refractive index change $\eta_{\rm x}(t) = \eta_0(t) + \alpha_{\rm x} E_{\rm Coul}(t)$ phase $E_{\rm x}(t) \sim E_{\rm x}(t) \exp(i\omega t - i\eta\omega z/c)$

Our "standard" description

Both descriptions include assumption of small-signal limit...

(does the "new optical field" itself undergo an EO interaction ..?)

High field effects...

Extension to high field considered necessary for ILC...

$$E_{\rm Coul} \approx \frac{Q}{\sqrt{2\pi} \epsilon_0 r \sigma_z} \sim 100 \, {\rm MV.m^{-1}}$$

fields of this magnitude imply significant retardation potentially > π

retardation treatment becomes liable to breakdown

ASTeC

SPPS (SLAC): expect "over-rotation" but not observed

EO breakdown observed with intense CTR pulses

Science & Technology

Facilities Council

S.P. Jamison/ LC-ABD meeting, Dundee, October 2008

Development of high-field/large-signal EO theory

starting point... wave equation with co-propagating non-linear source

S.P. Jamison/ LC-ABD meeting, Dundee, October 2008

...high-field/large-signal EO theory

can associate EO interaction with matrix operation on input probe spectrum

 $\underline{\underline{T}}(z) = \{T_{mn}\} \equiv \left\{ M_{mn}^{(0)} \left[\frac{\exp(i\Delta k_{(m-n),m}z) - 1}{i\Delta \widetilde{k}_{(m-n),m}z} \right] \right\}$

 $= \left\{ \delta \omega_m \chi_{m-n}^{(2)} A_{m-n}^{\text{TH}_z} \left[\frac{\exp(i\Delta k_{(m-n),m}z) - 1}{i\Delta k_{(m-n),m}} \right] \right\} .$

End result....

- "simple" matrix exponential solution to probe spectrum
- Fourier transform to get time domain solution

S.P. Jamison. Appl. Phys. B 91, 241-247, (2008)

where

Example of high field short-pulse simulation...

"simple" matrix exponential solution...

care needed for e.g. 4000x4000 matrix as in above simulation

Laser transport... in FLASH experiments

More complicated setup Less access to setup in accelerator

- Vacuum laser transport from laser "hut" to tunnel.
- · Some relay lenses in transport
- Remote adjustments on many mirrors

Selected References:

Free-electron laser pulse shape measurements with 100fs temporal resolution using a 10fs Ti:sapphire laser and differential optical gating X.Yan, A.M. MacLeod, W.A.Gillespie et al. *Nucl. Instr. Meths. Phys.Res. Vol A429 (1999) 7-9*

Sub-picosecond electro-optic measurement of relativistic electron pulses X. Yan, A.M. MacLeod, W.A. Gillespie, G.M.H. Knippels, D. Oepts, A.F.G. van der Meer. *Physical Review Letters 85 (2000) 3404-7*

Single-shot electron bunch length measurements I. Wilke, A.M. MacLeod, W.A. Gillespie, G. Berden, G.M.H. Knippels, A.F.G. van der Meer *Phys. Rev. Lett. 88 No 12 (2002) 124801/1-4*

Real-time, non-destructive, single-shot electron bunch-length measurements G. Berden, S.P. Jamison, A.M .MacLeod, W.A. Gillespie, B. Redlich and A.F.G. van der Meer *Physical Review Letters* **93** (2004) 114802

Temporally resolved electro-optic effect S.P.Jamison, A.M. Macleod, G. Berden, D.A. Jaroszynski and W.A. Gillespie *Optics Letters* **31**, *11 (2006) 1753-55*

Benchmarking of Electro-Optic monitors for Femtosecond electron bunches G. Berden, W.A.Gillespie, S.P. Jamison, B. Steffen, V. Arsov, A.M. MacLeod, A.F.G. van der Meer, P.J. Phillips, H. Schlarb, B. Schmitt, and P. Schmüser *Phys. Rev. Lett. 99 043901 (2007)*

Electro-optic time profile monitors for femtosecond electron bunches at the soft X-ray free-electron laser FLASH B. Steffen, V. Arsov, G. Berden, W.A. Gillespie, S.P. Jamison, A.M. MacLeod, A.F.G. van der Meer, P.J. Phillips, H. Schlarb, B. Schmitt, and P. Schmüser *Physical Review Special Topics – Accelerators and Beams 12 032802 (2009)*