

CLIC Schedule issues

K. Foraz CLIC09 Workshop 12-16 October 2009

Outline

- CLIC-ILC comparisons : From CLIC workshop 2008 to ALCPG09 in Albuquerque
 - CLIC workshop 2008
 - ILC GDE in Tsukuba in 2009
 - ILC ALCPG09 in Albuquerque in 2009
- CLIC schedule progress and issues
 - Main LINAC: from module production to installation schedule
 - Injectors: very first drafts

CLIC workshop 2008

- First draft for the main LINAC was presented:
 - Phase 1: ~ 7 years
 - Phase 2: ~ 10 years

- Actions were:
 - Compare CLIC and ILC assumptions
 - Review ILC schedule with same CLIC assumptions

From CLIC workshop 2008 to ALCPG09 in Albuquerque

ILC-GDE Tsukububa 09: ILC schedule – 2 tunnels

- 2 versions were presented:
 - Unlimited resources \rightarrow total duration = 6 years

- Resource « leveled \rightarrow total duration = 9 years

Tsukuba 09: ILC and CLIC Schedule comparison

	CLIC		ILC		
	500GeV	3 TeV	Unlim. Resour.	Leveled resources	
Nb of TBM	2		9	4	
Nb of teams for elec. general services	4		24	8	
Nb of teams for cooling and ventilation	4		12	4	
Nb of teams for cabling	4		24	8	
Nb of teams for machine installation	2		12	2	
(years)	7,2	10,5	6	9,5	
				2 tunnels	

From CLIC workshop 2008 to ALCPG09 in Albuquerque

ALCPG09 in Albuquerque– ILC schedule 1 tunnel

Question raised:

- Number of fronts for the machine
- Number of TBM

- Main Linac
 - The schedule of the production of modules has been checked with respect to the installation schedule (see next slides)
 - Since last year, the cross section evolved (ventilation ducts, pipes in "radier", and the system are becoming more matures (for instance the survey); the progress rates will be reviewed with the project engineers (to be done)
- Injectors
 - First draft for 500 GeV

Modules production and installation

- Production ۲
 - Tendering process ends t0+1.5 year
 - Module comp. reception starts t0+3 years
 - Module assembly starts
 - Module ready for inst. starts
 - Last module ready for inst
 - 3 lines of production
 - 60 months of production

Courtesy G. Riddone

- Installation
 - Transport : up to 40 modules /day with 6 vehicles (1 shift, 5d/wk) (K. — Kershaw)

t0+5years

- What is the t0 (for module production) ?
 - With the hypothesis that the contracts for modules will be signed 6 months after the start of civil engineering works:
 - ► t0(modules)=to(c.e. start)-2 years
 - \rightarrow modules will have to be stored before installation (see next slides)
 - \rightarrow but the installation of modules can end at t0(c.e. start)+9 years !!!

- 500GeV modules in place at to+6 years
- 3TeV modules in place at to+9 years

From module prod. to installation schedule * Case 1

With 4 TBM * Case 1

- What is the t0 (for module production) ?
 - With the hypothesis that the contracts for modules will be signed 6 months before the start of civil engineering works:
 - ► t0(modules)=to(c.e. start)-3 years
 - \rightarrow modules will have to be stored before installation (see next slides)
 - \rightarrow but the installation of modules can end at t0(c.e. start)+8 years !!!

Courtesy G. Riddone

- 500GeV modules in place at to+6 years
- 3TeV modules in place at to+8 years

With 4 TBM * Case 2

CLIC schedule progress and issues

Start of Module production versus end of installation

- The start of the process for the production of modules has an impact on the end dates.
- The next step is to schedule the delivery and tendering process for the other components, as well as the integration milestones.
- Since October the typical cross section changed, and each system is more mature (for instance survey); progress rates need to be reviewed with the groups.

Injectors 500GeV – first draft for civil engineering

Drive beam + Main beam + curves = 3 years

▶ slopes down to points 3 and 2 with a road header (15m/wk), i.e. t0+4 years slopes excavated, in line with the construction of the main LINAC.

►~ 3 years for the installation and commissioning of the injectors (schedule to be studied)

- Main LINAC
 - Schedule the delivery and tendering process for the other components
 - Review of the progress rates w.r.t the evolution of the project.
- Injectors
 - Schedule the installation and commissioning
 - Schedule the injectors for 3TeV
- Technical note on schedule
 - Started