

Report from the Cost & Schedule WG Cost aspects

Philippe Lebrun
on behalf of the C&S WG
Mick Draper, Katy Foraz, Lau Gatignon, Claude Hauviller,
Bernard Jeanneret, John Andrew Osborne, Yannis Papaphilippou,
Germana Riddone, Louis Rinolfi, Karl-Martin Schirm

CLIC'09 Workshop CERN, 12-16 October 2009

Ph. Lebrun – CLIC'09 Workshop

CLIC Cost & Schedule WG Mandate

- Establish and optimize the cost of the CLIC complex at the nominal colliding beam energy of 3 TeV, as well as that of an optional first phase with a colliding beam energy of 500 GeV
- Define and optimize the general schedule for the 3 TeV and 500 GeV projects defined above
- Estimate the electrical power consumption of the 3 TeV and 500 GeV projects defined above
- Identify possible modifications of parameters and/or equipment leading to substantial capital and/or operational cost savings, in order to define best compromise between performance and cost
- Develop collaboration with ILC project on cost estimate methodology and cost of common or comparable systems, aiming at mutual transparency
- Document the process and conclusions in the CDR in 2010

Organization

- CLIC C&S WG communication and reporting lines established
- Web node active (access protected)
- PBS updated and completed for 3 TeV and 500 GeV phases, including standardization of level 4 technical systems
- Role and names of domain/subdomain coordinators established

CLIC Cost & Schedule WG Communication & reporting lines

CLIC Study Costing Tool

- CLIC Study Costing Tool v 0.4 receptioned and operational, on-line from C&S WG web page (access protected)
- CLIC cost estimate 2007 entered in Costing Tool
- Demonstrations to domain coordinators in C&S WG meetings
- Study of cost variance factors and use of LHC experience
- Method for currency conversion, price escalation and cost uncertainty arrested

Cost variance factors

- Technical design
 - Evolution of system configuration
 - Maturity of component design
 - Technology breakthroughs
 - Variation of applicable regulations
- Industrial execution
 - Qualification & experience of vendors
 - State of completion of R&D, of industrialization
 - Series production, automation & learning curve
 - Rejection rate of production process
- Structure of market
 - Mono/oligopoly
 - Mono/oligopsone
- Commercial strategy of vendor
 - Market penetration
 - Competing productions
- Inflation and escalation
 - Raw materials
 - Industrial prices
- International procurement
 - Exchange rates
 - Taxes, custom duties

Engineering judgement of responsible

Contract adjudication

Procurement

Reflected in scatter of offers received from vendors (LHC experience)

Tracked and compensated

Outside project control

Observed tender prices for LHC accelerator components

All data (218 offers)

Tender price relative to lowest bid [bin upper limit]

Sampling from an exponential PDF $(m=0, \sigma=1)$

- In response to an invitation to tender, consider n (valid) offers distributed according to an exponential PDF: application of the CERN purchasing rule will lead to select the lowest bidder
- What is the PDF of the lowest bidders, i.e. of the prices effectively paid?
- In the following, reasoning on the integral PDF

From distribution of offers to distribution of prices

- Consider two valid offers X1, X2 following same exponential distribution with $P(Xi < x) = F(x) = 1 \exp[-a(x-b)]$
 - \Rightarrow m = b + 1/a and $\sigma = 1/a$
- Price paid (lowest valid offer) is Y = min(X1, X2): what is the probability distribution of Y?
- Estimate P(Y < x) = P(X1 < x or X2 < x) = G(x)
- Combined probability theorem P(X1 < x or X2 < x) = P(X1 < x) + P(X2 < x) P(X1 < x and X2 < x)
- If X1 and X2 uncorrelated, P(X1 < x and X2 < x) = P(X1 < x) * P(X2 < x)
- Hence, P(X1 < x or X2 < x) = P(X1 < x) + P(X2 < x) P(X1 < x) * P(X2 < x) and $G(x) = 2 F(x) F(x)^2 = 1 \exp[-2a(x-b)]$
 - \Rightarrow Y follows exponential distribution with m=b+1/2a and $\sigma=1/2a$
- By recurrence, if n uncorrelated valid offers X1, X2,...Xn are received, the price paid Y = min (X1, X2,...Xn) will follow an exponential distribution with m = b + 1/na and $\sigma = 1/na$

Dispersion of prices due to procurement uncertainties

- For LHC accelerator components
 - 48 contracts
 - 218 offers, i.e. 4.54 offers per contract on average
- From exponential fit of statistical data on offers, m = 1.46, $\sigma = 0.46$
- We can therefore estimate the expected relative dispersion on paid prices
- - ⇒ based on LHC experience, the relative standard deviation on component prices due to procurement uncertainties can be taken as 50/n %, where n is the expected number of valid offers

Industrial price indices (CH)

Indice des prix à la production, Suisse Source: Office Fédéral de la Statistique (Indices de la construction ramenés à mai 2003 = 100)

Ph. Lebrun – CLIC'09 Workshop

Swiss vs CERN indices

Comparison of Swiss industrial and CERN materials indices (base 100 = June 2002)

Ph. Lebrun - Madd 16 10 90 12 14 orkshop

Towards a method for CLIC cost risk assessment

- Separate cost risk factors in three classes, assumed independent
 - Technical design maturity & evolution of configuration
 - Judgement of « domain responsible »
 - Rank in 3 levels, numerical values of σ_{config} tbd
 - Price uncertainty in industrial procurement
 - Estimate n number of valid offers to be received
 - Apply $\sigma_{industry} = 50/n \%$
 - Economical & financial context
 - Deterministic
 - Track currency exchange rates and industrial indices
- Estimate r.m.s. sum of σ_{config} and $\sigma_{industry}$
- Compensate economical & financial effects
 - Choice of CHF as reference currency
 - Applications of compound indices from Office Fédéral de la Statistique (CH)
 - Arts et métiers Industrie for technical components
 - Construction for civil engineering Ph. Lebrun – CLIC'09 Workshop

Cost drivers, cost models and analytical costing

- Cost consciousness well established in CLIC technical working groups (Module, RF structures, CES,...)
- Some cost drivers and cost reduction areas identified as well as their interplay - analysis not yet exhaustive
- Cost scaling models only exist for limited number of components or subsystems
- Analytical costing exercise under way by domain coordinators with input from technical system experts
- Significant differences observed w r to 2007 cost estimate (e.g. instrumentation, accelerating structures)
- Feedback provided to technical system design
- Targeted cost studies by industrial companies considered, in particular for large-series components

Tunnel size, a cost driver...

Example of preliminary design for analytical costing of component

PBS 1.2.1 and 2 Pre-Dumping Ring	QUADRUPOLE 30 T/m
Length	758 mm
Weight	1720 kg
Power	17.4 kW
N. of units	408
Cost/unit	CHF
TOTAL COST	4 kCHF

Example of analytical costing of system, based on scaling of unit costs

Overview of beam instrumentation

	Nº Devices	Cost (MCHF)
Intensity	627	
Position	52821	75
Beam Size	1045	3
Energy	291	75
Energy Spread	50	417
Bunch Length	238	<u> </u>
Beam Loss /Halo	4	
Beam Polarization	23	
Tune	8	
Beam Phase	336	3
Luminosity	4	
Wakefield monitors	142812	, 12
	Total (MCHF)	

T. Lefèvre

CLIC-ILC collaboration on costing

- Cost risk analysis
 - Open exchange of views with ILC team in face-to-face and Webex meetings
 - Different methods imposed by regional rules and procedures, but full awareness of each other's approaches
 - Common document in preparation
- Learning curves for large series production
 - Standard methodology applied by CLIC and ILC
 - Extrapolation needed from previous projects to very large series components ⇒ conservative approach recommended

Learning curve: theory

- T.P. Wright, *Factors affecting the cost of airplanes,* Journ. Aero. Sci. (1936)
- Unit cost c(n) of nth unit produced

$$c(n) = c(1) n^{\log_2 a}$$

with a = « learning percentage », i.e. remaining cost fraction when production is doubled

Cumulative cost of first nth units

$$C(n) = c(1) n^{1+\log_2 a} / (1+\log_2 a)$$

with C(n)/n = average unit cost of first nth units produced

n = number per production line ≠ total number in project

Learning coefficients

TABLE IV
LEARNING PERCENTAGE OF SELECTED REFERENCE INDUSTRIES

Industry	ρ
Complex machine tools for new models	75%-85%
Repetitive electrical operations	75%-85%
LHC magnets	80%-85%
Shipbuilding	80%-85%
Aerospace	85%
Purchased Parts	85%-88%
Repetitive welding operations	90%
Repetitive electronics manufacturing	90%-95%
Repetitive machining or punch-press operations	90%-95%
Raw materials	93%-96%

Pn. Lebrun - CLIC 09 Worksnop

CLIC two-beam modules Complexity, number, integration

CLIC 3 TeV (per linac)

Modules: 10462

Accelerating str.: 71406 PETS: 35703

MB quadrupoles: 1996 DB quadrupoles: 20924

CLIC 500 GeV (per linac)

Modules: 2124

Accelerating str.: 13156 PETS: 6578

MB quadrupoles: 929 DB quadrupoles: 4248

JUJ VYOINGIIOP

CLIC vs LHC components

Ph. Lebrun – CLIC'09 Workshop

Effect of learning coefficient on average unit cost up to rank N

Learning curve: average unit cost

Saturation of learning process has little impact on total cost

Learning curve: effect of saturation

Summary

- CLIC Cost & Schedule (& Power/Energy) WG reorganized
- CLIC Study Costing Tool operational
- Methods for cost risk analysis and escalation established
- PBS of CLIC 3 TeV reorganized, PBS of CLIC 500 GeV established (CLIC TC)
- Analytical costing exercise of CLIC 3 TeV and 500 GeV started, based on updated PBS and expertise of PBS domain responsibles
 - Reporting September-November 2009
 - First iteration by end 2009
- Identification of cost drivers and cost reduction issues
 - Feedback to technical design on specific domains
- Good collaboration with ILC
 - Exchange of information: periodic meetings
 - Cooperation on specific topics, open information on others