

On the energy dependence of DC sparks

A. Hansen, A. Descoeudres and <u>H. Timkó</u> CERN

- DC spark setup
- Energy dependence of breakdown properties for Cu and Mo
 - How do breakdown field and other quantities change?
- A collection of other results
 - Evolution of ß without breakdowns
 - The effect of an oxide
 - Can lattice structure influence E_{BRD}?

Exploring DC sparks

Why DC sparks?

- Allows to study breakdowns on a *fundamental* level
- Simple and fast testing of materials, surface treatments etc.

Why energy dependence is interesting...

- The DC setup has been designed to match the energy lost in RF structures during breakdown (we store ≈1J in a capacitor)
 - However, it can be that only a *fraction* of this energy is consumed by the breakdown itself
 - Also, if we know the breakdown behaviour of materials as a function of energy, we can optimise our structures
 S₁ R_{ext} S₂
- Lowering the energy available
 ↔ changing the capacitor

 $+U_{0} \xrightarrow{S_{1}} R_{ext} \xrightarrow{S_{2}} R_{plasma}$

E_{BRD}, ß and E_{LOC} for Cu as a function of energy

- E_{BRD} increasing with decreasing energy (less deconditioning is possible)
- ß and E_{LOC} remain constant
- E_{BRD} =190 MV/m, ß=62, E_{LOC} =10.4 GV/m

E_{BRD} , ß and E_{LOC} for Mo as a function of energy

- E_{BRD} seems to decrease with decreasing energy (less conditioning possible)
- ß and E_{LOC} remain constant
- E_{BRD} =350 MV/m, ß=34, E_{LOC} =11.3 GV/m

How conditioning effects E_{BRD}

- Conditioning time remains the same, however,
 - With less energy available for the breakdown, less (de-)conditioning can be achieved $\Rightarrow E_{BRD}$ changes
- This was confirmed by preconditioning tests
 - By preconditioning with higher energy, higher E_{BRD}
 can be reached (for Mo)

^{*X}</sup> Energy scaling of the spot size*</sup>

- Also the diameter of the damaged area depends on the energy available
 - Area mostly determined by the conditioning phase
 - Decreases with decreasing energy; saturates below a given threshold

Saturation

• Below a given thres sufficient to create

10

Scaling of single craters in Cu

- Depth to width ratio is independent of dose
 - Both experiments and simulations gave the same

CLIC workshop 2009

aspect ratios

Other breakdown phenomena

The evolution of ß during breakdown rate measurements

ß increases during the breakdown-free periods

Breakdown

200 MV/m: BDR = 4×10^{-3}

The evolution of ß without breakdowns

The oxide layer of Cu

- An oxide layer has been grown on Cu, which was thicker than the natural oxide layer
 - Higher initial E_{BRD} and conditioning last longer
 - Has also a different E_{LOC} as the naturally oxidised Cu

During conditioning, E_{BRD}=350-500 MV/m in both cases This lasts only for 15-20 sparks (left case) or 20-40 sparks (right case)

- A sparked (damaged) surface was reoxidised by heating and was sparked then again
 - Was not able to recover the initial high E_{BRD}
 - Oxidised, smooth surface \Rightarrow high E_{BRD}
 - Oxidised, sparked surface \Rightarrow no improvement
 - Connection to the oxidation process?

The breakdown field of Co

- Crystal structure can influence the formation of field emitters and therefore, breakdown properties
 - A E_{BRD} ranking of materials by crystal structure was suggested by F. Djurabekova (HIP)
 - We tested Co, which has HCP lattice, and expected a high E_{BRD}
 - Experiments confirmed this

Ranking materials by crystal structure?

Summary

- The energy dependence of breakdown properties is governed by (de)conditioning properties of the material (oxide layer, etc.)
- ß steadily grows when a field is applied (without breakdown events)
- A thick oxide layer on Cu can improve E_{BRD} for a while
- The crystal structure might influence the triggering of breakdowns

Future plans

- Growth of spot size during conditioning
- Oxidised Cu: effect of surface treatments

- Investigation of differently oriented single crystals
- Thermal effects: heating and cooling
- Other materials...

Thank you!

