Beam-Beam backgrounds estimates

B. Dalena and D. Schulte

Outline

Beam-Beam Backgrounds at CLIC:

- Beam particles
- Beamstrahlung photons
- Coherent Pairs
- Incoherent Pairs
 - Impact on the vertex detector (D. Schulte)
- $\gamma\gamma \rightarrow hadrons$
 - beam tracked trough Main Linac and BDS before collision
 - w and w/o machine imperfections

Incoherent Pair Production

- Real-real, virtual-real and virtual-virtual scattering contribute
- Most significant background at all the energies

Pair Spectrum

ILC 0.5 TeV: n_{incoh} 0.1x10⁶ bx CLIC 0.5 TeV: n_{incoh} 0.08x10⁶ bx CLIC 3 TeV: n_{incoh} 0.3x10⁶ bx

Deflection by the beams

- Most of the produced particles have small angles with random direction
- ⇒ some of the pairs are focused some are defocused

Required Aperture

x [m]

y [m]

<u>[</u>]

- Incoherent pairs are shown
 - Deflection of coherent pairs is similar
 - But have higher energies, i.e. smaller angles
- Aperture requirement is roughly

$$r \approx 50 \,\mathrm{mm} \sqrt{\frac{s}{\mathrm{m}}}$$

 No detector magnetic field included

Impact on the vertex detector

- Simplified study using simple cylinder without mass
 - Coverage is down to 200 mrad
- Simulating number of particles that hit at least once
 - Experience indicates that number of hits is three per particle
- \Rightarrow At $r_1 \approx 30$ mm expected 1 hit per train and mm²

Hit distribution

- GEANT 3 based simulation
- Angular coverage ∆z/r = 3, 5 and Bz = 5 T
- ⇒ hit density does not depend on coverage angle if the radius is large enough to avoid deflected particles
- Angular coverage ∆z/r = 5 and Bz = 3, 5 T
- \Rightarrow vertex radius for constant hit density scale as:

$$r \propto \sqrt{1/Bz}$$

Hadronic background

c) ______ SJ 2

- G.A.Schuler and T.Sjostrand, CERN-TH/96-119 (1996) parametrization of cross section used in GUINEA-PIG
- Cross section slightly increase with CM energy
- Most energy is in the forward/backward direction
 - Evis \approx 450 GeV per hadronic event for no cut
 - Evis \approx 23 GeV for θ > 0.1
 - Evis \approx 12 GeV for θ > 0.2

Hadronic background estimates

- Beam tracking with PLACET trough LINACs and BDSs
- Beam-Beam ($\gamma\gamma \rightarrow$ hadrons) calculation with GUINEA-PIG
- Aim \rightarrow study BB background at different machine parameters/conditions
 - Perfect machines and non-nominal beam parameters
 - Imperfect machines and nominal beam parameters

Horizontal beam size and charge

 Perfect machines scan of horizontal beam size and of the charge

> $15 < \sigma_x < 85 \text{ nm}$ 0.3e⁻⁶ < charge < 3.72e⁻⁹

Vertical beam size

 Perfect machines scan of vertical beam size

 $0.1 < \epsilon_{y} < 0.3 \times 10^{-7}$ m rad

Vertical emittance growth

- Nominal CLIC beam parameters
- Static imperfections:

case 1

- quadrupole offset and rotation in the main linac
- perfect bds
- 1-to-1 steering in linac and bds
 case 2
- quadrupole offset and rotation
- + cavity misalignment
- perfect bds
- 1-to-1 steering in linac and bds
 case 3
- quadrupole and cavity misalignment + cavity phase and gradient errors
- perfect bds
- 1-to-1 steering in linac and bds

Summary and Outlook

- Beam-Beam background study
 - Simplified simulation with GUINEA-PIG + GEANT 3 yields 3 hit in the vertex detector (r = 30 mm) due to incoherent pairs production
 - ~ 2.9 $\gamma\gamma \rightarrow$ hadronic events for CLIC nominal parameter 3 TeV CM
 - considering different beam parameter and machine conditions
 - \Rightarrow background increase with luminosity
- To do... realistic beam-beam background simulation
 - Static and dynamic machine imperfections + their corrections (alignment-tuning-feedback) all along the machine