

HTGEN : generic Halo and Tail generator.

- Standalone + fully interfaced with PLACET for info, manual, instructions, examples see http://hbu.home.cern.ch/hbu/HTGEN.html
- Recently upgraded by Miriam Fitterer, Erik Adli, Barbara Dalena and myself to also work with sliced beams as required for halo studies of the drive beam.
- Here : returning to the original and probably most important application :

Halo and collimation in the BDS

relevant for the design CLIC collimation system, vacuum specification and machine backgrounds to the CLIC Experiment(s). Important to minimize halo production. Halo collimation at high energy results in muon backgrounds (which came as a bad surprise in the SLC)

General recent summary (May 2009) - collimation paper published in <u>PRSTAB 12.081001</u> *Tracking studies of the Compact Linear Collider collimation system*,

I. Agapov, H. Burkhardt, and D. Schulte / CERN, A. Latina / FNAL, G. A. Blair, S. Malton, J. Resta-López / John Adams & Royal Holloway University

Among many possible halo source, an important source which is always present and already sufficient to result in a significant muon flux is beam-gas scattering

Elastic scattering Mott (Coulomb)

relevant if $\theta > = \theta_{beam} = \sqrt{\epsilon} \beta_{x,y}$

 $\sigma_{\rm el} = \frac{4\pi \, Z^2 r_e^2 \, \beta_y}{\epsilon_N \, \gamma} \qquad \begin{array}{c} \text{at const} \\ \epsilon_N \propto 1/\gamma \end{array}$

Energy dependent. More halo from low energies. Make sure to have good vacuum at beginning of LINAC or collimation at intermediate energy ! Inelastic scattering Bremsstrahlung

$$\frac{d\sigma}{dk} = \frac{A}{N_A X_0} \frac{1}{k} \left(\frac{4}{3} - \frac{4}{3}k + k^2\right)$$
$$\sigma_{\rm in} = \frac{A}{N_A X_0} \left(-\frac{4}{3}\log k_{\rm min} - \frac{5}{6} + \frac{4}{3}k_{\rm min} - \frac{k_{\rm min}^2}{2}\right)$$

no E depend., $\int dk$ for k > 1%usually smaller than elastic Source of off-momentum halo and background

would require rather massive (magnetized)

shielding to be effective

Conclusion from our 2002 paper.

To clean up :

Better invest in keeping halo low in the first place. Include HALO study in design

Transverse beam profiles at from the LINAC at the BDS entrancePLACET-HTGEN.EuroTeV-Report-2008-076

HTGEN allows to specify the residual gas individually for eachelement. For the estimates here, the same values were set to all elements :LINAC section10 nTorrBDSsection10 nTorrCO at room temperature (300 K)

CLIC estimate. P = probability / m for scattering > 1 σ divergence

Location	Е	Gas	ρ	$\sigma_{ m el}$	Р
	GeV		m^{-3}	Barn	m^{-1}
LINAC	9	CO	3.2×10^{14}	2.7×10^7	8.9×10^{-7}
BDS	1500	CO	3.2×10^{14}	1.7×10^5	1.1×10^{-8}

Elastic : probability 80x higher beginning of LINAC at 9 GeV compared to end at 1.5 TeV and BDS. Integrated over length : total LINAC Prob. P = 1.16×10^{-3} , BDS P = 6.0×10^{-5} together 1.2×10^{-3} at 1σ total LINAC Prob. P = 1.29×10^{-6} , BDS P = 6.7×10^{-8} together 1.4×10^{-6} at 30 σ (loss) Inelastic : scattering probability for >1% energy loss : 2.1×10^{-13} /m summing up over both LINAC and BDS : P = 5.0×10^{-9} /m

4×10⁹ e/bunch 311 bunches

1.24×10¹² e/train

2 × 10⁻⁴ fraction hitting spoilers, determined with HTGEN tracking 2.4×10⁸ e/train on spoilers

- ~ 9×10^{-4} fraction resulting in secondary muons (without tunnel fillers)
- ~ 2×10⁵ muons / train end of BDS

depends critically on vacuum and spoiler layout

A more reliable estimate requires a full simulation with : Beam + Halo generation (PLACET-HTGEN), full tracking up to spoilers ✔ ☞

Full simulation of the Halo interaction with the spoilers and tracking of the secondary muons. Methods exist : BDSIM - GEANT4 Detailed geometry and acceptance - spoilers to experiments What is tolerable for the experiment(s) ?

1. Monte Carlo Generator for Muon Pair Production, by Burkhardt, Kelner, Kokoulin, <u>CLIC-Note-</u>511, 2002

2. Production of muon pairs in annihilation of high-energy positrons with resting electrons by Burkhardt, Kelner, Kokoulin, <u>CLIC-Note-554</u>, 2003

Background simulation for the CLIC Beam Delivery System with Geant by G. Blair, H. Burkhardt, H.J. Schreiber, <u>CLIC-Note-519</u>, 2002

Geant4 Simulation of High Energy Muon Interactions, A. G. Bogdanov, H. Burkhardt, et al. <u>IEEE-TNS-01462665.pdf</u>, 2004

Geant4 home page and physics reference manual (Vers. 9.2 Dec. 2008); Muon production fully implemented

YSP4 2169.400565 m XSP4 2185.222515 m

Using the current BDS lattice BDS/v_09_04_01 / job.madx

ENG : 0.008 m in both planes Spoilers X closed to 0.00012 m Y closed to 0.0001 m

 $v_09_04_01/bds.name.aperture.FixedSR.collaper$

 $v_09_04_01/bds.name.aperture.FixedSR.collaper$

Is our current collimation design ok for muons?

Feedback from from Lew Keller / SLAC, following the collimation paper, from 1 Sept. 2009 :

... I just saw your nice article on CLIC collimation ...

In ILC we thought it was better to have the energy collimation section after the betatron collimation section so that the energy section could clean up some of the mess from the betatron spoilers, and it was especially useful for dispersing muons.

Do we have to consider the need for muon stoppers / tunnel fillers ?

Time to revisite collimation for muons ?

I could provide the HTGEN support would require help / resources on the BDSIM / geometry / layout part