# Reconstructing SUSY Point K' at CLIC

M Battaglia and JJ Blaising



Point K' representative of a class of SUSY scenarios, compatible with current constraints (including CDM), characterised by high sparticle masses which are barely observable at the LHC while might be studied in enough details in multi-TeV  $e^+e^-$  collisions to connect them to DM.



Here first attempt to study processes accessible at 3 TeV to map CLIC potential, benchmark detector response but also also understand and overcome possible limitations and issues in event reconstruction algorithms.

Adopt CLIC-modified ILD detector in MOKKA+Marlin, assume CLIC08 Parameters, analyses include beamstralung (CALYPSO) and  $\gamma\gamma \rightarrow$  hadrons background (HADES) (D Schulte)



## Mass Spectrum and e<sup>+</sup>e<sup>-</sup> Pair-Production Cross Sections



| Model            | K'   |
|------------------|------|
| $m_{1/2}$        | 1300 |
| $m_0$            | 1001 |
| $\tan\beta$      | 46   |
| $sign(\mu)$      | _    |
| $m_t$            | 175  |
| Masses           |      |
| $ \mu(m_Z) $     | 1420 |
| h                | 123  |
| H                | 1161 |
| A                | 1153 |
| $H^{\pm}$        | 1164 |
| X                | 554  |
| $\chi_2$         | 1064 |
| χ3               | 1430 |
| $\chi_4$         | 1437 |
| $\chi_1^{\pm}$   | 1064 |
| $\chi_2^{\pm}$   | 1435 |
| ğ                | 2820 |
| $e_L, \mu_L$     | 1324 |
| $e_R, \mu_R$     | 1109 |
| $\nu_e, \nu_\mu$ | 1315 |
| $	au_1$          | 896  |
| $\tau_2$         | 1251 |
| $\nu_{\tau}$     | 1239 |
| $u_L, c_L$       | 2722 |
| $u_R, c_R$       | 2627 |
| $d_L, s_L$       | 2723 |
| $d_R, s_R$       | 2615 |
| $t_1$            | 2095 |
| $t_2$            | 2366 |
| $b_1$            | 2297 |
| ha               | 2349 |

#### $e^+e^- \rightarrow H^0A^0 \rightarrow bbbb$

#### Samples and Event Selection

| Process                       | Generator           | xSec<br>(fb)     | Events generated |
|-------------------------------|---------------------|------------------|------------------|
| $H^0A^0$                      | ISASUGRA<br>+PYTHIA | 0.3              | 2900             |
| W <sup>+</sup> W <sup>-</sup> | PYTHIA              | 464.9            | 7600             |
| $Z^0Z^0$                      | PYTHIA              | 26.9             | 7000             |
| tt                            | PYTHIA              | 19.9             | 8200             |
| WWZ                           | PYTHIA              | 32.8             | 1750             |
| ZZZ                           | PYTHIA              | 0.32             | 1000             |
| bbbb                          | CompHep<br>+PYTHIA  | 0.41             | 2200             |
| H+H-                          | ISASUGRA<br>+PYTHIA |                  | 2000             |
| Inclusive<br>SUSY             | ISASUGRA<br>+PYTHIA |                  | 5000             |
| γγ →had                       | HADES<br>+PYTHIA    | 3.2 evts<br>/ BX | Ssgnal<br>only   |

#### Simple Cut Analysis:

suppress SM bkg through event shape variables b-tagging and  $\Delta M$ , SUSY through missing E.



### $e^+e^- \rightarrow H^0A^0 \rightarrow bbbb$

#### Di-Jet Mass Resolution

Parton energy resolution: w/o  $\gamma\gamma$  bkg Rms<sub>90</sub>/E =0.11: contribution from b s.l. decays (=0.07 for HA  $\rightarrow$  qqqq) and jet clustering; degrades to 0.15 for 20 BX and 0.18 for 40 BX.

#### Constrained Kinematic Fit

Adjust measured jet momenta  $p_M$ 

$$\vec{p}_F = e^a \vec{p}_M + b \vec{p}_B + c \vec{p}_C$$

minimising the  $\chi^2$  given by

$$\Sigma_i (a_i - a_0)^2 / \sigma_a^2 + b_i^2 / \sigma_b^2 + c_i^2 / \sigma_c^2$$

imposing the constraints

$$p_x = p_y = 0$$

 $E \pm |p_z| = \sqrt{s}$ 

Improvement of di-jet inv. mass: Gaussian resolution 68 GeV  $\rightarrow$  30 GeV



| 11.1 00 | Nb. of<br>BX | Signal<br>Events | Resolution<br>(GeV) | Mass<br>(GeV) |
|---------|--------------|------------------|---------------------|---------------|
| ΤΛΤα    | 0            | 257 18           | 68.5 5.7            | 1112.2 5.3    |
|         | 5            | 283 18           | 78.7 6.5            | 1120.0 5.7    |
|         | 20           | 320 19           | 92.0 6.5            | 1168.3 6.9    |
|         | 40           | 248 17           | 118.2 8.3           | 1190.2 9.2    |
|         | 60           | 234 16           | 121.1 8.5           | 1209.0 9.5    |
| 1       | Nh. of       | Signal           | Resolution          | Mass          |
|         | BX           | Events           | (GeV)               | (GeV)         |
|         | 0            | 319 21           | 30.2 4.6            | 1139.5 3.1    |
|         | 5            | 270 23           | 40.1 7.1            | 1146.9 4.7    |
|         | 20           | 259 22           | 46.3 8.4            | 1158.3 5.6    |
|         | 40           | 230 21           | 57.3 8.7            | 1169.0 8.1    |
|         | 60           | 270.8 34         | 107.8 14.8          | 1176.3 10.1   |
|         |              |                  |                     |               |

#### $e^+e^- \rightarrow H^0A^0 \rightarrow bbbb$ **Preliminary Results**



 $M_A = (1139.5 \pm 3.1) \text{ GeV}$ 



#### $e^+e^- \rightarrow \chi^+_1 \chi^-_1$ , $\mu_R \mu_R$ , $\tau_1 \tau_1$ Threshold Scan Preliminary Results

Threshold scans with 2 ab<sup>-1</sup> at maximum energy and 2 ab<sup>-1</sup> at 2.0-2.7 GeV

| Particle           | Mass Accuracy (GeV) |
|--------------------|---------------------|
| $\chi^{\pm}{}_{1}$ | ± 4.3               |
| $\mu^{\pm}{}_{R}$  | ± 6.2               |
| $\tau^{\pm}{}_{1}$ | ± 6.7               |





 $e^+e^- \rightarrow \chi^+_1 \chi^-_1 \rightarrow W^{\pm} \chi^0_1 X$ **Preliminary Results** 

#### Two useful topologies: LJJ, 4J

3 TeV 2 ab<sup>-1</sup>

Select  $W \rightarrow qq'$  and measure W energy

Fit kinematic endpoints of  $E_W$  for  $M(\chi^0_1)$  assuming  $M(\chi^{\pm}_1)$  from threshold scan:

 $\delta M(\chi^0_1) = \pm 8.0 \text{ GeV}$ 





 $e^+e^- \rightarrow \mu^+_R \mu^-_R \rightarrow \mu + \chi^0_1 \mu^- \chi^0_1$ **Preliminary Results** 

2  $ab^{-1}$  at 3 TeV

reject SM  $\mu\mu\nu\nu$  and ee $\mu\mu$  backgrounds with  $p_t$  and  $M_{\mu\mu}$  cuts

Fit kinematic endpoints of  $E_{\mu}$  for  $M(\chi^0_1)$  assuming  $M(\mu_R)$  from threshold scan:

$$\delta M(\chi^0_1) = \pm 5.0 \text{ GeV}$$





#### $e^+e^- \rightarrow \mu^+_R \mu^-_R \rightarrow \mu^+ \chi^0_1 \mu^- \chi^0_1$ Tracking

Track momentum resolution adequate to analysis, resolution dominated by beamstrahlung Observe broken tracks for p > 600 GeV resulting in drop in efficiency after quality cuts.



#### Implications of the CLIC Accuracies: Neutralino Relic Density Ωh<sup>2</sup> in MSSM

First determine dependence of  $\Omega h^2$  on sparticle masses by varying only parameter under study:



#### Implications of the CLIC Accuracies: Neutralino Relic Density Ωh<sup>2</sup> in MSSM

Perform scan to full MSSM imposing constraints on sparticle masses as obtained from preliminary CLIC analyses;

| Particle                                                                                         | Mass Accuracy<br>(GeV)        | 2   |
|--------------------------------------------------------------------------------------------------|-------------------------------|-----|
| $\chi^{\pm}{}_{1}$                                                                               | ± 4.3                         | 2   |
| $\mu^{\pm}{}_{R}$                                                                                | ± 6.2                         |     |
| $\tau^{\pm}{}_{1}$                                                                               | ± 6.7                         | 1.5 |
| $\chi^0{}_1$                                                                                     | ± 4.0                         | E   |
| H <sup>0</sup> /A <sup>0</sup>                                                                   | ±5.6                          | 1   |
| <b>Result Set</b>                                                                                | $\delta\Omega h^2/\Omega h^2$ | 0.5 |
| $\begin{array}{c} H^{0}\!/A^{0},\chi^{0}{}_{1,}\\ \chi^{\pm}{}_{1},\tau_{1,}\mu_{R} \end{array}$ | <b>±0.167</b>                 | 0   |
| + $\chi^{\pm}_{2}$ , $\tau_{2}$ ,<br>$\chi^{0}_{3}$ and $\chi^{0}_{4}$                           | ±0.110                        | 0   |



Encouraging preliminary results on reconstruction of heavy SUSY particle pairs production at 3 TeV with events full simulation and reconstruction, full SM backgrounds and overlay of  $\gamma\gamma \rightarrow$  hadrons background, shows CLIC potential;

Current corpus of analyses may represent a basis for first round of detector optimisation and benchmarking and establishing a repository of CLIC events for detector and physics studies (stdhep, slcio, tuples);

Significant effort is required to address crucial issues raised by this first exercise:

- parton energy resolution and degradation in presence of b-jets and γγ bkg (need to separate W/Z/h with high efficiency purity);
- jet clustering in presence of γγ bkg;
- highly efficient b-tagging in presence of heavy hadrons decaying in the detector;
- mitigation of machine-induced background by detector space-time granularity and optimised event reconstruction algorithms.

![](_page_13_Picture_7.jpeg)