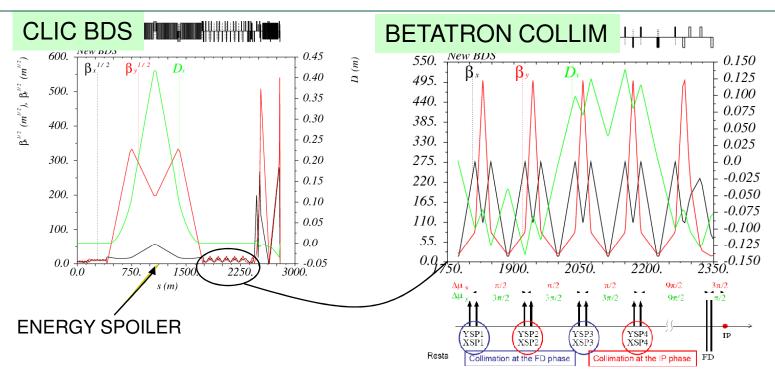


Polishing Collimation Optics

Frank Jackson STFC Daresbury Laboratory

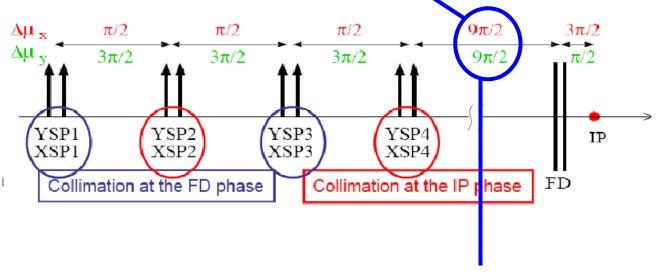

Introduction

- Already have adequate CLIC BDS collimation design
- Look at effectiveness of design and potential improvements
- Motivation comes from previous ILC collimation studies

CLIC Collimation Scheme

- Passively surviving energy collimation (huge β fn) followed by consumable betatron collimation
- Betatron collimation: 4 x,y spoilers \Box /2 apart (first two spoilers collimate position and angle, second two repeat this), matched to phase of FD/IP, full gaps ~ 200 μm
- Very strong matching quadrupoles in design.

The Cockcroft Institute of Accelerator Science and Technology


CLIC Collimation Performance

- Collimation depth revised in 2009 (B. Dalena, CERN)
 - Used full BDS halo tracking to account for all lattice 'imperfections' (non-linearities, phase mismatches, etc)
 - See PAC '09 paper 'Status of the CLIC Beam Delivery System'
 - Spoilers set at $15\sigma_x$ and $55\sigma_y$ ensures no particle or photon hits final doublet
- This collimation depth calculation ensures 100% collimation performance in the design
- But can we do better? Improve transport, open
 spoilers further?

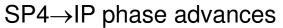
Collimation Phases

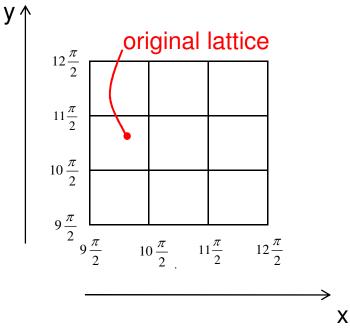
In principle, spoilers are matched to IP (exact multiples of $\pi/2$)

But actually, in current lattice $\Delta\mu_x = 9.7~\pi/2$ $\Delta\mu_y = 10.6~\pi/2$

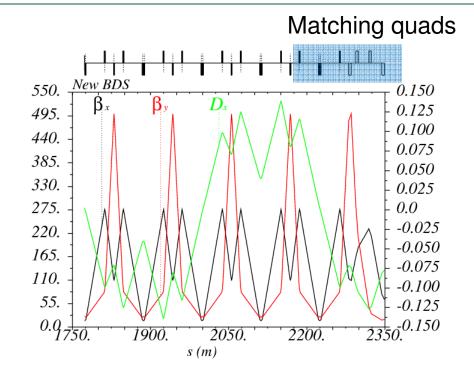
These spoilers are not collimating exactly at the FD or IP phase

ILC Collimation Studies and Experience

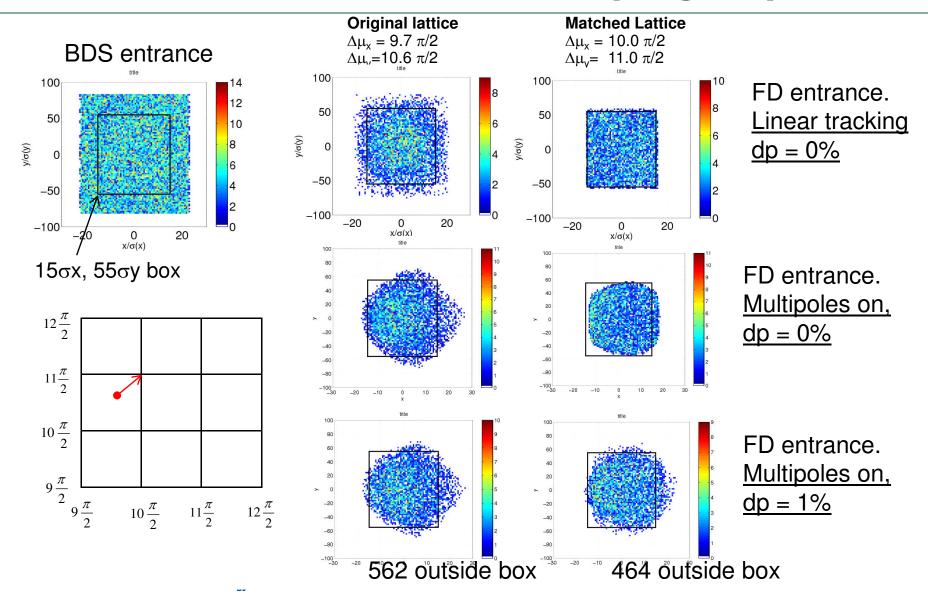

- For historical overview see ILC-Technical Review Committee comparisons of NLC, TESLA, CLIC collimation in 2003 (PAC '03)
- NLC had good collimation performance
 - ILC BDS collimation evolved from NLC
- Collimation phase relationships were lost during the evolution.
- Restoring phases in a random search of restored-phasesolutions
 - Recovered the original ILC (NLC) collimation performance*



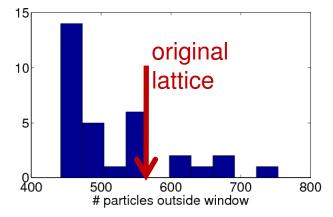
See for example "COLLIMATION OPTIMISATION IN THE BEAM DELIVERY SYSTEM OF THE INTERNATIONAL LINEAR COLLIDER", F. Jackson, PAC'07.



Collimation Phase Matching


The Cockcroft Institute of Accelerator Science and Technology

Perfect phase matching in both planes is possible in a number of discrete locations in phase space


Linear Collimation Performance (Original)

Collimation Optimisation = Random Search

 Search phase-matched solutions for best collimation performance (non-linear tracking, dp = 1%)

- Can reduce 'escaped particles' by ~ 20%.
- NB: some phase-matched solutions have <u>poorer</u> performance than the original.

Conclusion

- Present design with 15, 55 gives good collimation performance (even though ~2% of halo particles escape)
- Phase-matching collimation→FD gives somewhat better performance
 - Not clear yet if this will permit wider collimation apertures
- More extensive search and optimisation (multipoles) might be useful
- Needs to be integrated with luminosity optimisation.

Background 1

- CLIC Lattice v_09_04_01
- Tracking in MADX-PTC
 - Can only track up to sextupole in MERLIN. Can't track all the multipoles since MERLIN can't cope with zero length multipoles in the CLIC lattice.
 - No point in doing MERLIN tracking with sextupoles on but other multipoles off – presents an unrealistic picture.
 - MERLIN tracking was done in 2009 phone meetings, but these results are unreliable.

Background 2

- Matching Quad Strengths
 - 150 T/m to 440 T/m (c.f. QD0 permanent magnet 575 T/m, aperture radius ~ 4 mm)
- Collimation parameters

For old collimation depth 10 sx, 44 sy

CLIC Spoiler tables:

xgaps = 80 um,

ygaps = 80 um,

for 10 sigx and 44 sigy

In MERLIN this is X0.16Y10 for xspoiler

X10Y0.16 for yspoiler

 $0.16 = 0.16 \text{ mm} = 2 \times \text{half gap of } 80 \text{ um}$

For new collimation depth 15 sx, 55 sy

xgaps = 117 um, ygaps = 100 um In MERLIN X0.23Y10 for xspoiler X10Y0.20 for yspoiler

