

- ILC Design R&D Status
- Evolving the ILC "Baseline"
- Key R&D Program and Milestones
- Technical Design (2012)
- CLIC / ILC Collaboration
- Moving toward a Linear Collider project

İİL

ICFA: e+e- Linear Collider

- Physics Parameters
 - International subcommittee report
- Technology

İİL

- Superconducting RF
- International Design Team
 Global Design Effort (2005)

ILC Collider Parameters ICFA Report

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

ILC Competing Technologies

Evolution from: SLAC & SLC

1.3 GHz - Cold

ESLA

Evolution: CEBAF & LEPII + TRISTAN, HERA, etc.

11.4 GHz - Warm

JLC

12-Oct-09 CLIC Workshop

ĬĪĿ

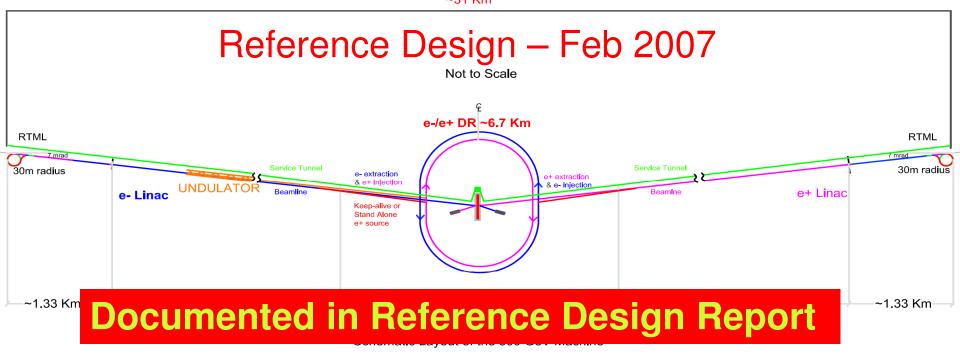
The ILC SCRF Cavity

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

- Achieve high gradient (35MV/m); develop multiple vendors; make cost effective, etc
- Focus is on high gradient; production yields; cryogenic losses; radiation; system performance

12-Oct-09 CLIC Workshop

Designing a Linear Collider



12-Oct-09 CLIC Workshop

ILC Reference Design

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector

- · Circular damping rings for electrons and positrons
- Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

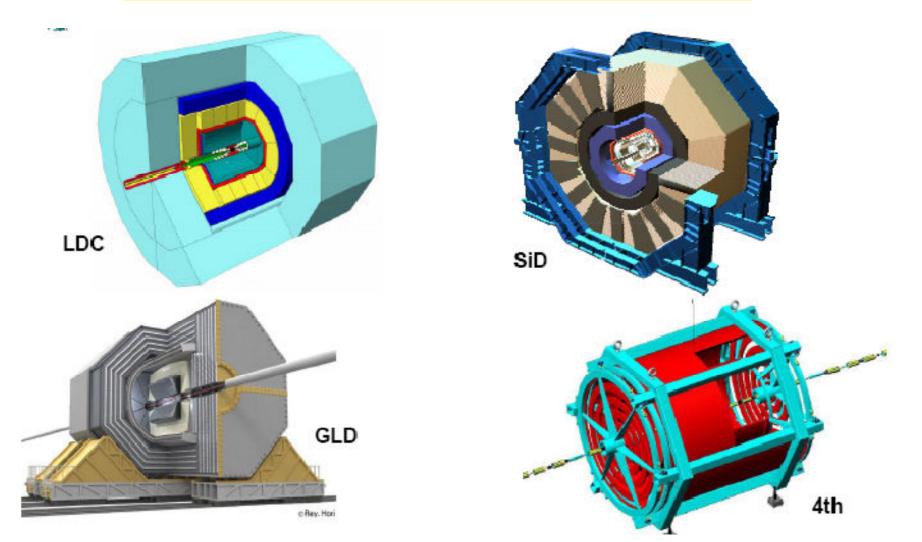
Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

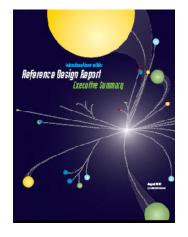
The value costs have already been reviewed three time


- 3 day "internal review" in Dec
- ILCSC MAC review in Jan
- International Cost Review (May)
- Σ Value \neq 6.62 B ILC Units

Summary RDR "Value" Costs

Total Value Cost (FY07) 4.80 B ILC Units Shared 1.82 B Units Site Specific 14.1 K person-years ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr) 1 ILC Unit = \$1 (2007)

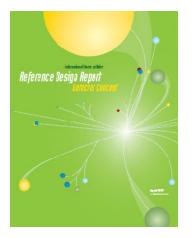
12-Oct-09 CLIC Workshop


Detector Concepts Report

12-Oct-09 CLIC Workshop

RDR Complete

Reference Design Report (4 volumes)


Executive Summary

Physics at the ILC

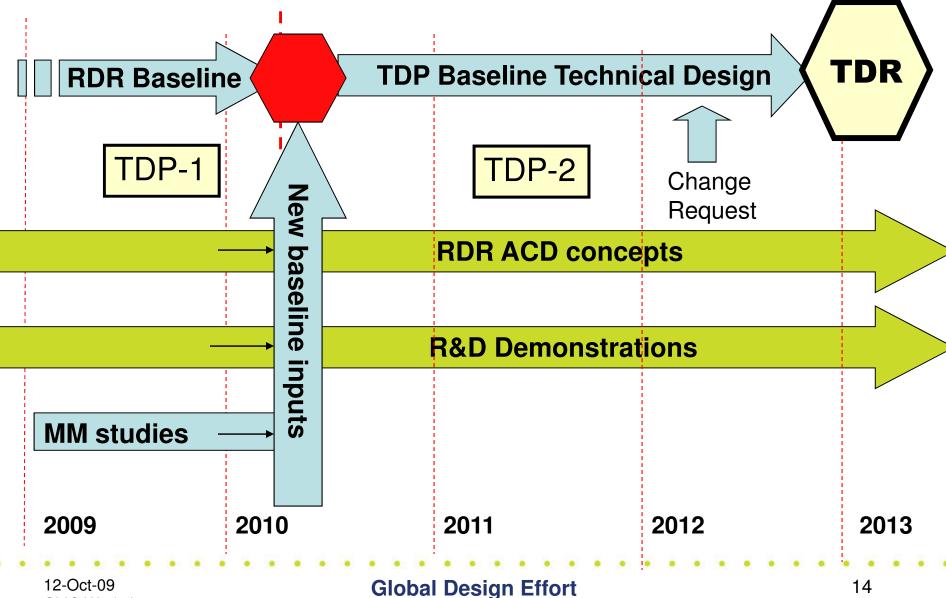
Accelerator

Detectors

12-Oct-09 CLIC Workshop

IIL

ILC R&D / Design Plan



Major TDP Goals:

- ILC design evolved for cost / performance optimization
- Complete crucial demonstration and riskmitigating R&D
- Updated VALUE
 estimate and schedule
- Project Implementation Plan

Updated every six months A "living document"

Technical Design Phase and Beyond

12-Oct-09 **CLIC Workshop**

ilC

Major R&D Goals for TDP 1

SCRF

IIL

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50%yield
- Preview of new results from FLASH

ATF-2 at KEK

 Demonstrate Fast Kicker performance and Final Focus Design

Electron Cloud Mitigation – (CesrTA)

• Electron Cloud tests at Cornell to establish mitigation and verify one damping ring is sufficient.

Accelerator Design and Integration (AD&I)

 Studies of possible cost reduction designs and strategies for consideration in a re-baseline in 2010

12-Oct-09 CLIC Workshop **Global Design Effort**

TODAY

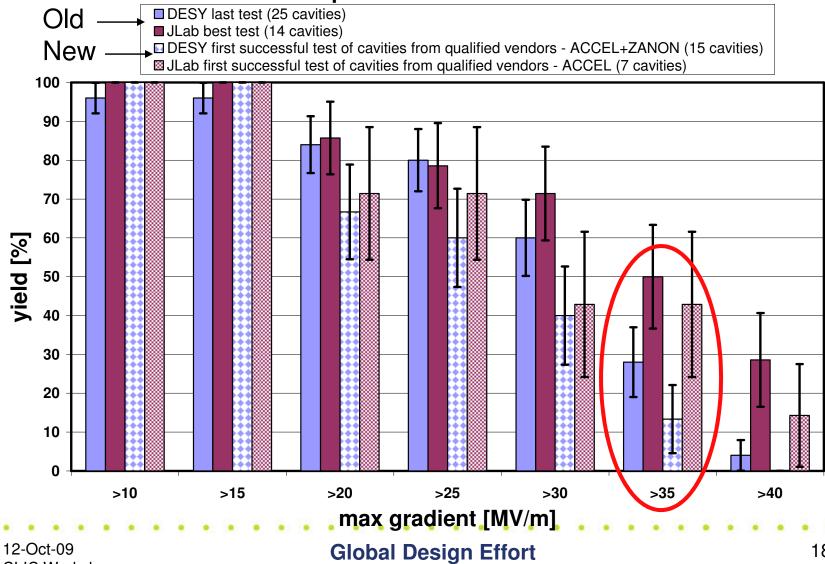
The ILC SCRF Cavity

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

- Achieve high gradient (35MV/m); develop multiple vendors; make cost effective, etc
- Focus is on high gradient; production yields; cryogenic losses; radiation; system performance

12-Oct-09 CLIC Workshop

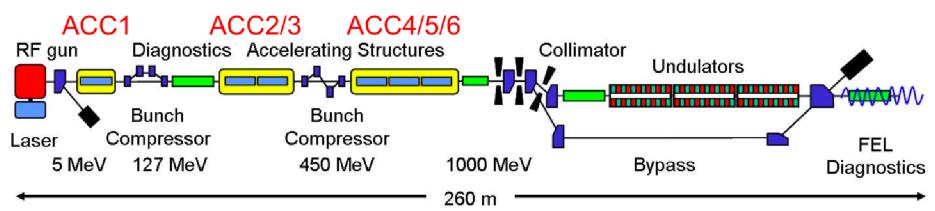
Standard Process for Yield Plot


	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW (w/ experienced venders)
Process	1st Electro-polishing (~150um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Cold Test (vert. test)	Performance Test with temperature and mode measurement (1 st / 2 nd successful RF Test)

12-Oct-09 CLIC Workshop

Gradient Goal

Electropolished 9-cell Cavities

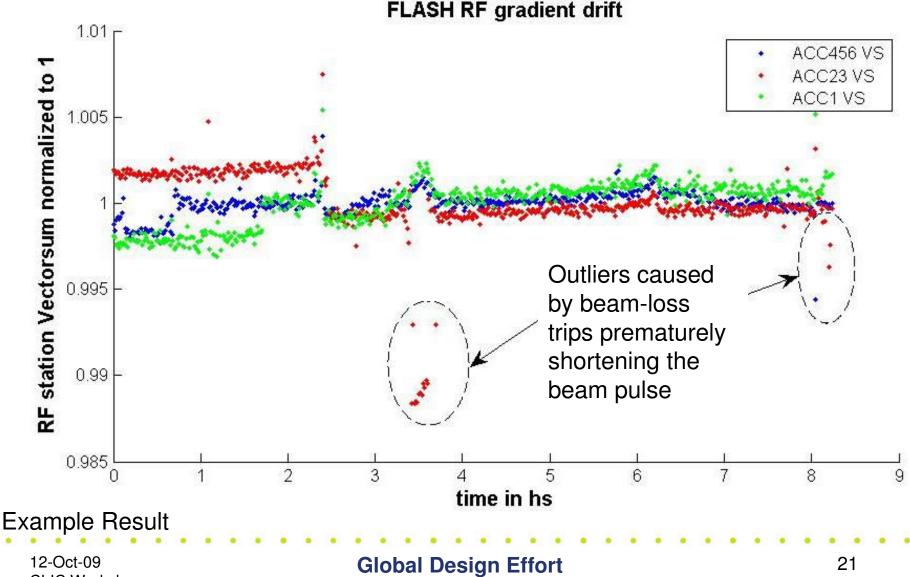

CLIC Workshop

Year	07	2008	2009	2(010	2011	2012
Phase		TDP-1		TDP-2		2	
Cavity Gradient in v. test to reach 35 MV/m		>> Yield 50% >>		> Yield 90%			
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for plug-compatible string (DESY, FNAL, INFN, KEK)					
System Test with beam		FLASH (DESY)		NML (F	NAL)		
acceleration		STF2 (KEK)			(EK)		
Preparation for Industrialization		Mass Production Technology R&D					

ic

TTF/FLASH 9mA Experiment

Full beam-loading long pulse operation \rightarrow "S2"



		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200*	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

- Stable 800 bunches, 3 nC at 1MHz (800 μs pulse) for over 15 hours (uninterrupted)
- Several hours ~1600 bunches, ~2.5 nC at 3MHz (530 μs pulse)
- >2200 bunches @ 3nC (3MHz) for short periods

12-Oct-09 CLIC Workshop

RF Gradient Long-Term Stability

CLIC Workshop

ΪĻ

21

Major R&D Goals for TDP 1

SCRF

IIL

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50%yield
- Preview of new results from FLASH

ATF-2 at KEK

Demonstrate Fast Kicker performance and Final Focus
 Design

Electron Cloud Mitigation – (CesrTA)

 Electron Cloud tests at Cornell to establish mitigation and verify one damping ring is sufficient.

Accelerator Design and Integration (AD&I)

• Studies of possible cost reduction designs and strategies for consideration in a re-baseline in 2010

12-Oct-09 CLIC Workshop

- Cost constraint in TDR
 - Updated cost estimate in 2012 ≤6.7 BILCU
 - Need margin against possible increased component costs
- Process forces critical review of RDR design
 - Errors and design issues identified
 - Iteration and refinement of design
 - More critical attention on difficult issues
- Balance for risk mitigating R&D
 - Majority of global resources focused in R&D
 - Important to prepare / re-focus project-orientated activities for TDP-2
- Need for design options and flexibility
 - Unknown site location

12-Oct-09 CLIC Workshop

- 1. A Main Linac length consistent with an optimal choice of average accelerating gradient
 - RDR: 31.5 MV/m, to be re-evaluated
- 2. Single-tunnel solution for the Main Linacs and RTML, with two possible variants for the HLRF
 - Klystron cluster scheme
 - DRFS scheme
- 3. Undulator-based e+ source located at the end of the electron Main Linac (250 GeV)
 - Capture device: Quarter-wave transformer

- 4. Reduced parameter set (with respect to the RDR)
 - n_b = 1312 (so-called "Low Power")
- 5. Approx. 3.2 km circumference damping rings at 5 GeV
 - 6 mm bunch length
- 6. Single-stage bunch compressor
 - compression factor of 20
- Integration of the e+ and e- sources into a common "central region beam tunnel", together with the BDS.

Timeline

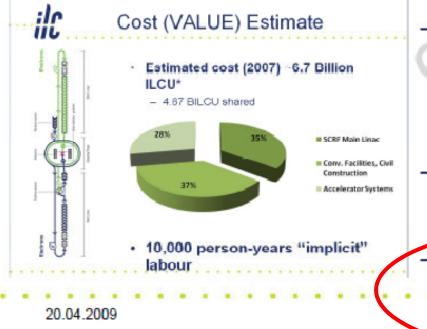
The end of TDP-1 in sight

ΪĻ

TDP2

Technical Design Report (2012)

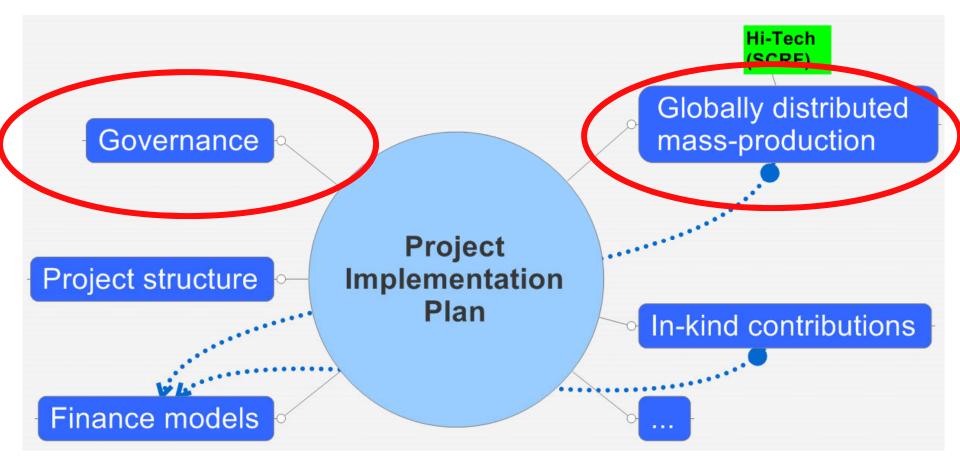
²ALCPG '09 New baseline Proposal discussions (SB2009) End 2009


Formal Proposal Document for new Baseline (AD&I team) LCWS Beijing Formal acceptance of new Baseline for TDP-2

12-Oct-09 CLIC Workshop

Cost Increments (Rough Estimates from 10.2008)

- Main Linac (total)
- Low-Power option
- Central injector Integration
- Single-stage compressor


~ 300 MILCU ~ 400 MILCU ~ 100 MILCU ~ 100 MILCU

- VERY preliminary: better estimates will be made (end 2009)
 - But still based/scaled from RDR value estimate
- Elements not independent! Careful of potential double counting!

Cost vs Performance vs Risk: important information for making informed decisions in 2010

Project Implementation Plan

12-Oct-09 CLIC Workshop

ΪĹ

ILC- CLIC Collaboration

- CLIC ILC Collaboration has two basic purposes:
 - 1. allow a more efficient use of resources, especially engineers
 - CFS / CES
 - Beamline components (magnets, instrumentation...)
 - 2. promote communication between the two project teams.
 - Comparative discussions and presentations will occur
 - Good understanding of each other's technical issues is necessary
 - Communication network at several levels supports it
- Seven working groups which are led by conveners from both projects

12-Oct-09 CLIC Workshop

Collaboration Working Groups

	CLIC	ILC
Physics & Detectors	L.Linssen, D.Schlatter	F.Richard, S.Yamada
Beam Delivery System (BDS) & Machine Detector Interface (MDI)	L.Gatignon D.Schulte, R.Tomas Garcia	B.Parker, A.Seriy
Civil Engineering & Conventional Facilities	C.Hauviller, J.Osborne.	J.Osborne, V.Kuchler
Positron Generation	L.Rinolfi	J.Clarke
Damping Rings	Y.Papaphilipou	M.Palmer
Beam Dynamics	D.Schulte	A.Latina, K.Kubo, N.Walker
Cost & Schedule	P.Lebrun, K.Foraz, G.Riddone	J.Carwardine, P.Garbincius, T.Shidara

12-Oct-09 CLIC Workshop

ilc

ILC / CLIC – Future Directions

- A recent management meeting at CERN reviewed collaborative status and looked at possible areas for additional co-operation.
- Conclusions from that meeting include:
 - The existing working groups were deemed a success and we added two more (damping rings & positron production)
 - Jean Pierre Delahaye (CLIC Study Leader) has joined the GDE EC, and Brian Foster (European Regional Director) has joined the CLIC steering committee.
 - We plan to hold joint ILC/CLIC management meeting,
- There was discussion about creating a joint linear collider program general issues subgroup encompassing both the ILC and CLIC programs. A joint statement has been endorsed by ILCSC and the CLIC Collaboraton Board.

CLIC / ILC Joint Working Group on General Issues

- ILCSC has approved formation of a CLIC/ILC General Issues working group by the two parties with the following mandate:
 - Promoting the Linear Collider
 - Identifying synergies to enable the design concepts of ILC and CLIC to be prepared efficiently
 - Discussing detailed plans for the ILC and CLIC efforts, in order to identify common issues regarding siting, technical issues and project planning.
 - Discussing issues that will be part of each project implementation plan
 - Identifying points of comparison between the two approaches .
- The conclusions of the working group will be reported to the ILCSC and CLIC Collaboration Board with a goal to producing a joint document.

- The central frontier of particle physics is and will continue to be the energy frontier!
- The LHC will open a new era at that frontier and its discoveries will motivate the next machine --- a lepton collider.
- That machine could be the ILC or CLIC (or maybe a muon collider). Science must dictate the choice of machines, informed by the realities of technical performance, readiness, risk and cost for each option
- It is our jobs (ILC and CLIC design teams) to make sure our R&D and design work will enable the best informed decision for our field.