

12GHz Phase Monitor

Alexandra Andersson CERN

Energy and phase stability requirements in CLIC

- Drive beam phase jitter leads to luminosity drop.
- $\Delta \varphi$ at 1 GHz causes 12 $\Delta \varphi$ at 12 GHz!
- Requirement at 1GHz (order of magnitude): drive beam phase jitter <0.02° (3.5E-4, 50 fs) drive beam energy jitter <0(1E-4)

(With a feed-forward, this may be relaxed by a factor 10!)

 Requirement at 12GHz (order of magnitude): drive beam phase jitter <0.2° (3.5E-3, 50 fs) drive beam energy jitter <𝒪(1E-4)

See: Erk Jensen, 4th CLIC Advisory Committee (CLIC-ACE)

- Drive beam gun
 - Beam current changes acceleration! $\frac{\delta V}{V} = -\frac{R}{V_0/I R}\frac{\delta I}{I}$ at full loading: $\frac{\delta V}{\delta I} = -2 \frac{\delta I}{\delta I}$ – Phase jitter from the source I
- Sub-harmonic buncher
 - Flips phase every 244ns. Creates also systematic error at 2.05 MHz
- via klystron:
 - Voltage $\delta \varphi = -\frac{L}{\lambda} (V(2+V))^{-3/2} \delta V$ Klystron body temperature: $\delta \varphi \approx 1^{\circ} \frac{\delta T}{V}$

 - Drive power $\delta \varphi \approx 2.3^{\circ} \frac{\log \delta P_{in}}{1}$
 - ... filament current, magnet current, waveguides...

See: Erk Jensen, 4th CLIC Advisory Committee (CLIC-ACE) A. Andersson 2009-10-14

Phase monitor development

Ready for beam tests in 2012 A. Andersson 2009-10-14

Timing Reference

Phase measurements in CLIC

Local Oscillator

•We need an Local Oscillator with «23fs integrated phase jitter

•The beam path provides some noise filtering below 3kHz

•The system here seems to come in around ~4fs

Electronics challenges

- Device non-linearities
- •Phase detectors are inherently non-linear device
- •Suppose a detector with an RF input consisting of a pure (sin) amplitude modulated signal. It has frequency components: f_0 , f_0-f_m , f_0+f_m
- •But all products of these are created at the input as well
- •2nd order: DC, 2f₀, 2f₀-2f_m, 2f₀+2f_m, 2f₀-f_m, 2f₀-f_m, f_m, 2f_m
- •And 3rd, and 4th, and ...
- •Which mix with the LO and all its harmonics: $f_{0,} 2f_{0,} 3f_{0...}$
- •These are all weighted by complex coefficients that depend on device parameters and parasitics. Complex \rightarrow AM-PM conversion
- •And for an nth order product, on the amplitude V_0^n
- •Thus, it is possible to find an operating point where the nonlinear terms are small enough

Looking at a 12GHz mixer

- •Mixing to baseband directly from 12GHz to avoid long device chains
- •The amplitude-squared dependant DC-DC term can be made small enough at low input levels
- •It follows a square law as expected
- •IF frequency response could be better

Managing non-linearities and noise

One device

Conclusions

An important topic for CLIC
Electronics already realised and tested at 30GHz for similar requirements.
Migration to 12GHz under way – similar and different approach
Should have electronics prototype to bench test and to test with CTF3 signals from TBTS in 2010