HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Progress in Breakdown Modelling – MD and PIC Breakdown Simulations

<u>Helga Timkó</u>, Flyura Djurabekova, Kai Nordlund, Aarne Pohjonen, Stefan Parviainen

Helsinki Institute of Physics and CERN

Konstantin Matyash, Ralf Schneider

Max-Planck Institut für Plasmaphysik

Outline

Modelling vacuum

MD results on crateries
Scaling of crater size

PIC results on plasma build-up
 Criteria for arc ignition
 Scaling with system parameters

arcs

Future plans

Breakdown studies have a broad application spectrum

Fusion physics

Linear collider designs

Plasmafacing Materials Erosion by Electrical Arcs

Finally an electric field builds up between the plasma and the surface of the solid named the *Langmuir sheath potential*. Electrical arcs may ignite between the plasma representing the negative electrode and the vessel wall representing the positive electrode.

Schematic of the ignition of an electrical arc at a surface tip, as well as burning and movement of the cathode spot [21, 22]. Erosion yields by electrical arcs, in atoms/electron [21],[25]-[30]. The estimated total number of atoms removed for an arc current of 5 to 10 A and a burn time of about 10-100 μ s are also introduced.

Achievements

- 1. Onset: direct field evaporation from surfaces and tips
- Plasma build-up: we have developed a one-dimensional
 PIC model and identified plasma build-up criteria
- **3.** Cratering: knowing flux & energy distribution of incident ions, erosion and sputtering was simulated with MD

- Comparing arc plasma bombardment and thermal heating, we found that:
 - Enhanced sputtering yield above a threshold, corresp. to the melting point
 - Only for plasma bombardment:
 (i) heat apiles 8 elector emission of
 - (i) heat spike & cluster emission abovethe threshold
 - (ii) experimentally seen complex crater shapes can form

Comparison to experiment

Self-similarity: Crater depth to width ratio remains constant over several orders of magnitude, and is the same for experiment and simulation

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Now to the plasma part...

CERN

Modelling DC arcs

- First we have to understand breakdowns in DC, before we can generalise to RF
- To have a direct comparison with experiments, we adjusted simulation parameters to the DC setup at CERN
- However, the results we present here are completely general and not restricted to the DC setup!

Phenomena taken into account

We started from a simple model with a code from IPP-MPG (Collaborators: R. Schneider, K. Matyash)

Field emission of electrons, Fowler-Nordheim eq.:

 $j_{FE} = a_{FN} \frac{\left(eE_{LOC}\right)^2}{\phi t(y)^2} e^{-b_{FN} \frac{\phi^{3/2} v(y)^2}{eE_{loc}}}, \text{ where } E_{loc} = \beta \cdot E$

Start from these $t(y) = 1, v(y) = 0.956 - 1.062 y^2$ where $y = \sqrt{\frac{e^3 E_{LOC}}{4\pi\varepsilon_0 \phi^2}}$ Evaporation of Cu neutrals

Produce ions

Collisions, esp. ionisation collisions

More e- & Cu

- Sputtering of Cu neutrals at the wall
- Secondary electron yield due to ion bombardment

-le the

Plasma build-up from a field emitter tip

- We start from a field emitter tip \rightarrow supply of electrons and neutrals \rightarrow build-up of plasma
- The field emitter is assumed in terms of an initial field enhancement factor
 - Dynamic beta: the "erosion" and the "melting" of the tip was implemented
 - We define the "melting current" j_{melt} as the threshold of electron emission current, which, if exceeded, sets β=1
- Neutral evaporation: an estimate was needed
 - Define the neutral evaporation to electron FE ratio $r_{Cu/e} = r_{Cu/e}(E,t,...)$ and approximate it with a constant

Under what conditions will an arc form?

Two conditions need to be fulfilled:

- High enough <u>initial local field</u> to have growing FE current
 Reaching the <u>critical neutral density</u> to induce an ionisation avalanche
 - The sequence of events leading to plasma formation:
 - Due to high electric field: electron FE, neutral evaporation
 - Ionisation and acceleration of the charged particles

 \Rightarrow e⁻, Cu and Cu⁺ densities build up

- "Point of no return": I_{mfp} < I_{sys} corresponding to a critical neutral density ~ 10¹⁸ 1/cm³ in our case
- \blacksquare lons \rightarrow sputtering neutrals \rightarrow more ions \Rightarrow ionisation avalanche

Plasma build-up

The only limiting parameter is what power can be supplied to the arc

Time constant

Close to critical Cu density below ~ 10 ns
Above ~ 10 ns, plasma formation is unavoidable

CERN

Neutral evaporation to electron FE ratio

0,001 – 0,008: below critical Cu density

0,01 – 0,05 gives realistic timescales for plasma build-up

Initial local field required

Up to now, 10 GV/m was assumed (measured value)
 Lowering E_{LOC} (either β or E) gave drastical changes
 8 MV/m: no ionisation avalanche any more
 7.5 MV/m and lower: no plasma at all

- The criterion seems to be:
 - to stabilise around ~6 GV/m to get growing FE current
- What happens if E_{LOC} = 12 GV/m?
 - It also stabilises to 6 GV/m only!
 - Note: BDR = 1 reached

Circuit characteristics

- Plasma has negative resistance
- The plasma seems to match the impedance of the external circuit to consume the available energy in the most effective way

When the 2 required conditions (high enough initial local field, reaching the critical Cu density) are fulfilled, plasma formation is inevitable

- The 1D model is suitable to obtain information on fluxes, densities etc. in the main stream of the plasma
 - Restricted to the build-up phase of plasma
- Also RF can be simulated, requires only minimal modifications in the code

Future plans

- Extension to a 2D model; we gain:
 - Information on the radial distribution and diffusion of the plasma
 - Resolving area
 - Self-consistent PIC-MD coupling
 - Self-consistent coupling between the external circuit & discharge gap
 - Then we could build in also more easily
 - Thermionic emission
 - SEE

Investigation of RF and other materials

Thank you!

Back-up slides

The Particle-in-Cell method

Basic idea: simulate the time evolution of *macro quantities* instead of particle position and velocity (cf. MD method)

- Fields and forces calculated on the grid
- Superparticles
- Restricted to certain regime of number density (ref. values)
- Kinetic approach of plasma, but can be applied both for collisionless and collisional plasmas
- Application fields: solid state physics, quantum physics...
- Has become very popular in plasma physical applications
 - Esp. for modelling fusion reactor plasmas (sheath and edge)

In our application:

- 1D code (no side losses resolved)
- Electrostatic: only Poisson's eq.

$$\frac{\varphi_{i+1} - 2\varphi_i + \varphi_{i-1}}{(\Delta x)^2} = -\frac{\rho}{\varepsilon_0}.$$

I. Field emission, neutral evapotation

Dynamic electron field emission current according to FN

- Space charge corrections: Above 0.6 A/μm²
- PIC takes into account both the external+internal potential, so this is taken automatically care of
- Thermionic emission can not be incorporated into 1D
- Beta expected to vary too; a dynamic beta, the "erosion" and the "melting" of the tip was implemented
 - We define the "melting current" j_{melt} as the threshold of electron emission current, which, if exceeded, sets β=1
- Neutral evaporation: An estimate was needed
 - Define the neutral evaporation to electron FE ratio $r_{Cu/e} = r_{Cu/e}(E,t,...)$ and approximate it with a constant
 - What is the possible range of r_{Cu/e}?

CERNY

II. Collisions

- With PIC we are limited in dynamic range/highest density that can be simulated; restricts to plasma build-up phase
- \Rightarrow We treat only three species: e⁻, Cu and Cu⁺
- Coulomb colisions for all possible pairs,

 $(e^{-}, e^{-}), (e^{-}, Cu^{+}) \text{ and } (Cu^{+}, Cu^{+})$

Electron-neutral elastic collisions

 $e^- + Cu \rightarrow e^- + Cu$

Neutral-neutral elastic collisions

 $Cu + Cu \rightarrow Cu + Cu$

Electron impact ionisation

$$e^- + Cu \rightarrow 2e^- + Cu^+$$

Charge exchange and momentum transfer

$$Cu^+ + Cu \rightarrow Cu^+ + Cu$$

III. Surface interaction model

Neutrals and ions sputter neutrals at the walls

 Energy dependent experimental yield
 Ions bombarding the cathode have in addition

- An enhaced sputtering yield when the ion flux is above a given threshold (based on MD simulations)
- A constant SEY = 0,5
- SEE not yet included, but was implicitly parametrised through testing high SEY