

Markus Aicheler, Ruhr-University Bochum and CERN

Surface thermal fatigue in uniaxial and biaxial loading

Introduction: CLIC surface heating phenomenon

- Pulsed magnetic field induces currents
- Superficial Jule heating
- \Rightarrow cyclic heat-and cooling phases
- \Rightarrow thermal fatigue
- For conductivity of copper: $\Delta T \approx 60 \text{ K}$
- $\Rightarrow \sigma \approx 0$ MPa to 150 MPa (comp.)
- \Rightarrow Heated layer depth several μm

Surface magnetic field distribution in HDS cell

Estimated CLIC life time 2x10¹⁰ cycles @ 50Hz (= 20 years of operation) => No mean to test a "real" structure under "real" conditions for whole life time!

Observation material

C10100 (OFE Copper)

- Reference material
- Well known
- Results comparable to other researchers
- Supplementary fatigue data needed (CuZr already well tested by Samuli)

Brazed

Heat treatment in vacuum furnace:
300 K/h -> 795 ℃; 60 min hold
100 K/h -> 825 ℃; 6 min hold
Natural cooling in vacuum

- Yield Strength: R_{p0.2} ≈ 72 MPa
- Ultimate tensile strength: $R_m = 270 \text{ MPa}$
- Average grain size: Ø 400 um

40% cold worked

- as received
- Round bar cold rolled Ø 40 mm and Ø 100 mm
- Yield Strength: $R_{p0.2} = 316 \text{ MPa}$
- Ultimate tensile strength: $R_m = 323$ MPa
- Average grain size: Ø 110 um

2h@1000 ℃

- Heat treatment in vacuum furnace:
- 300 K/h -> 1000 ℃; 120 min hold

Natural cooling in vacuum

- Yield Strength: R_{p0.2} ≈ 72 MPa
- Ultimate tensile strength: $R_m = 257 \text{ MPa}$
- Average grain size: Ø 1400 um

Laser fatigue device

- Thermal fatigue through irradiation
- OPTEX Excimer Laser; $\lambda = 248$ nm
- Repetition rate 200 Hz
- Pulse length: 40 ns
- 5 x 10⁴ shots @ 0.3 J/cm²
- ΔT = 280 K ⇔ ε = 7*10⁻³
- Round disc diameter 40 mm
- 25 discrete spots per disc

CLIC09

C10100_2h@1000_EP_Probe5_C5 Virgin Surface

C10100_2h@1000_EP_Probe5_C5

CLIC09

C10100_2h@1000_EP_Probe5_C5

C10100_2h@1000_EP_Probe5 Roughness Plot

CLIC09

C10100_2h@1000_EP_45°Probe3_C1

15.10.2009

C10100_2h@1000_EP_45°Probe3_C1

C10100_2h@1000_EP_Probe5 Roughness Plot

CLIC09

Real structure?

Real material...

Cu 45°

Courtesy of P.Alknes

SLAC RF heating device (Stanford)

Photos: Sami Tantawi Presentation 23 Jan. 2008

- Thermal fatigue due to RF heating
- Mushroom cavity @ 11,4 GHz
- Repetition rate 60 Hz
- Pulse length 1.5 µs
- 2 x 10⁶ Pulses @ 50 MW
- $\Delta T_{max} = 110 \text{ K} \Leftrightarrow \epsilon = 1.8^{*}10^{-3}$
- Round disc diameter 100 mm
- Continuous radial distribution of ΔT

15.10.2009

SLAC RF fatigue: Virgin Surface

CLIC09

SLAC RF fatigue: Highest temp. load

111

101

SLAC RF fatigue: Highest temp. load

Ultrasound swinger device (USS)

- Mechanical fatigue; R = -1 (R = $\sigma_{max} / \sigma_{min}$)

- Piezo electric resonant attenuator
- Repetition rate 24 kHz
- Cycles: 5*10⁹
- σ_{max} = +/-60 Mpa $\Leftrightarrow \epsilon = 6*10^{-4}$
 - Samples: special designed sonotrodes

USS annealed sample

Discussion uniaxial fatigue results

Observation:

- only undamaged [1 0 0] grains observed so far

- [1 1 1] grains can appear also undamaged (G6) or partly damaged (G3 and G4)

Analysis:

- In-plane orientation is very important in uniaxial loading
- The Euler1 angle of G6 differs significantly G3 and G4 do not differ in large amounts from G2 and G5
- Highest Schmid factor equal in G2-G6 and significantly lower in G6

Gradual degradation can therefore not be explained only by Euler1 and highest Schmid factor

Conventional fatigue test

- Mechanical fatigue; R = -1 (R = $\sigma_{max} / \sigma_{min}$)
- UTS electro-mechanical universal-test machine
- Repetition rate 0.5 Hz
- Tested in loads up to +/-250 MPa; stress controlled
- Sample shape conform ISO 12106
- 3-5 samples for one data point
- Damage criterion: rupture

Conventional fatigue test

Conventional fatigue test

Summary

 Laser experiments performed and full set of main orientations observed
 Further understanding and attention focused on machining strategy for structure

Tests with advanced textured copper films are ongoing
 Possibility to enhance fatigue behavior of copper?!?

Interpretation of uniaxial test results so far difficult
 Ultimate comparison maybe not possible but ranking ok

- CuZr (C15000) introduced into test campaigns
 => "Best" state identified and under testing

Thank you for the attention!!!

Discussion thermal fatigue results

=> [1 1 1] (blue) direction high developed and [1 0 0] (red) direction less developed fatigue features

Possible explanations:

- 1. Isotropic thermal expansion causes due to anisotropic module different stresses ($\sigma_{[111]}/\sigma_{[100]} = 2.3$!!!) (Moenig)
- 2. Different Schmid factor configurations on slip systems
- 3. Different dislocation substructures form as a function of out-of-plane orientation (Zhang and Wang et al.)

Schmid factor S=T/σ

Conclusion and outlook

Laser fatigue

RF fatigue

USS fatigue

Conclusion

- Features look quite similar for thermal and mechanical uniaxial fatigue
- In thermal fatigue **easy** damage <=> orientation **assignment**.

Uniaxial more difficult. (for once!!!)

Machining strategy very important !!!

Outlook

- Further Schmid factor **analysis** and **statistics** needed to explain phenomena
- Enhanced fatigue life of strongly textured materials?