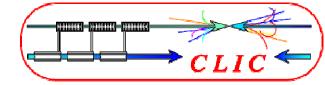
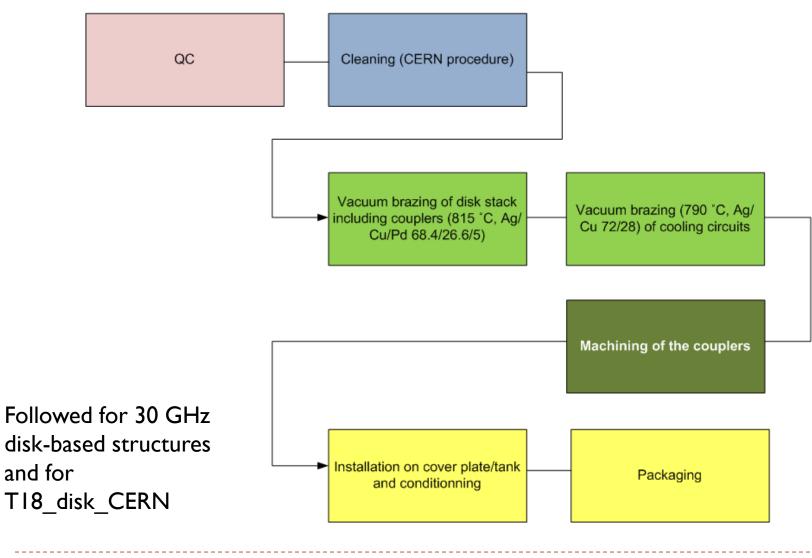

### CLIC09 WORKSHOP, WG4-RF structures

### **CERN** production methods

G. Riddone on behalf of the structure production team, 14.10.2009

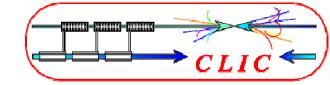





- Recall of CERN old fabrication procedure
  FOCUS on
- CERN new fabrication procedure
- Actions implemented at CERN and
  - comparison of production methods
- Structures in the pipeline

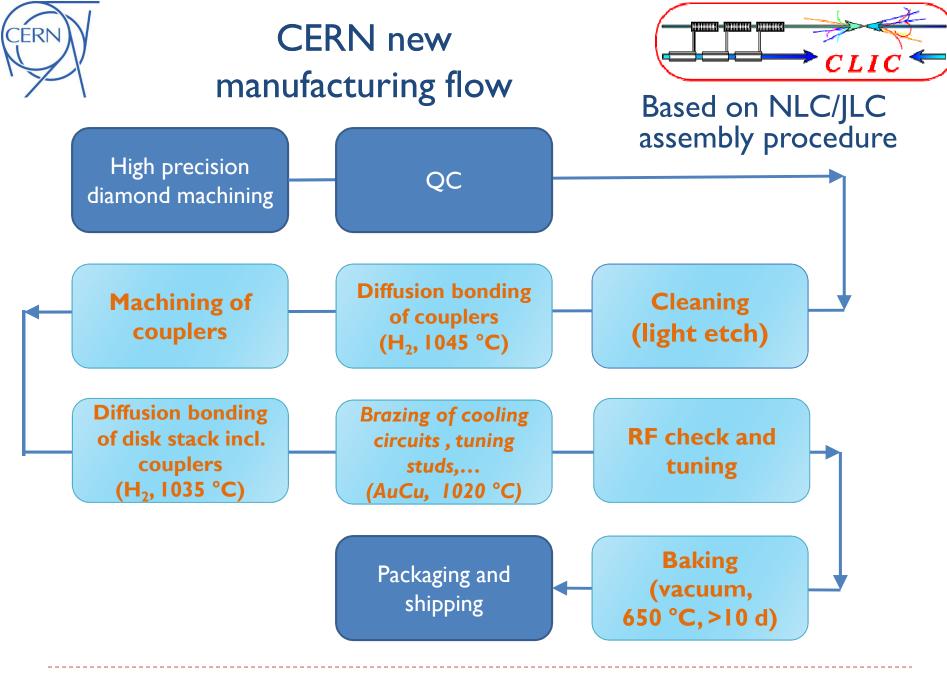



### CERN old manufacturing flow








Accelerating structures

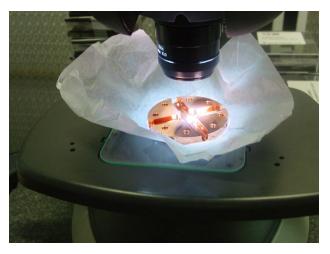


# Three T18 structures tested at SLAC/KEK showed excellent test results

consequent validation of design, machining and **assembly procedure** 

NLC/JLC fabrication technology: validated to 100 MV/m (baseline for future CERN X-band accelerating structures)





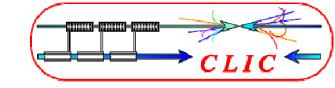

### Microscopic inspections

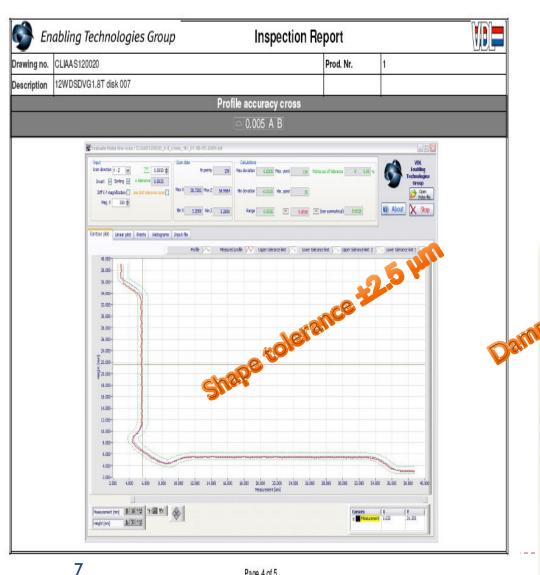


Microscopic inspection of disks before and after cleaning (on witness pieces)

CLIC




Microscopic inspection of couplers after machining

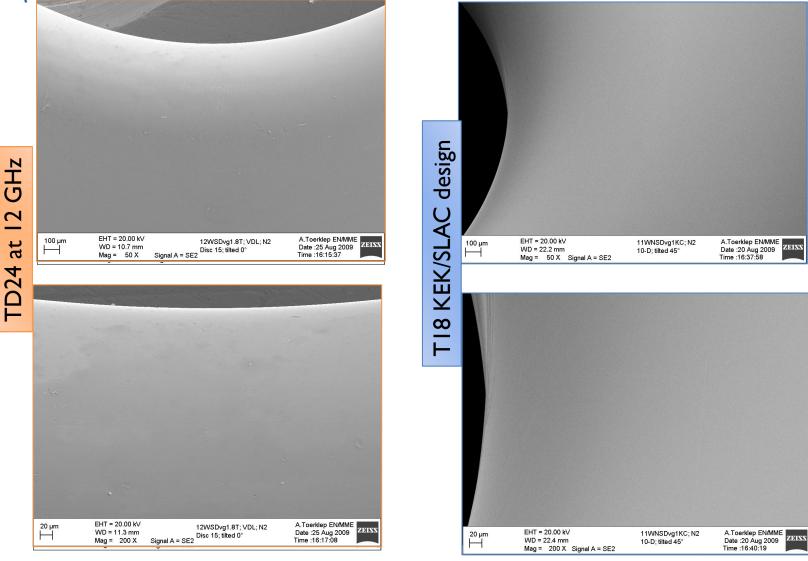

Microscopic inspection of structure after diff. bonding

Video inspections and SEM complement microscopic inspections



## Manufacturing at VDL




| 🎔 En        | abling Technologies Grou               | ıp      |        | Inspe    | ction Re |           |           |        |               |
|-------------|----------------------------------------|---------|--------|----------|----------|-----------|-----------|--------|---------------|
| Drawing no. | CLIAAS120020                           |         |        |          |          | Prod. Nr. | 1         |        |               |
| Description | 12WDSDVG1.8T disk 007                  |         |        |          |          |           |           |        |               |
|             |                                        |         |        | mension: |          |           | Pass Fail |        |               |
| Measurand   | Description                            | Nominal | Upper  | Lower    | Ac'      | rdon      | V V       | Remark |               |
| 1           | Ref A 0.002                            | 0.0000  | 0.0020 | 0.0000   | 00004    | 0.0015    | *         |        |               |
| 2           | Outer diameter Ref B                   | 80.0000 | 0.0050 |          | 00.0004  | 0.0004    | *         |        |               |
| 3           | 0.002                                  | 0.0000  | 0,007  | 000      | 0.0005   | 0.0005    | 4         |        |               |
| 4           | U.0.005 A<br>Width of cross Z+         | 0.0000  |        | 0.0000   |          | 0.0001    | 1         | <br>   |               |
| 6           | Width of cross Z+<br>Width of cross Z- | - · · · | 0.0025 |          | 11:2514  | 0.0002    | 1         |        |               |
| 7           | Width of cross Y-                      | 1.2500  | 0.0020 | Ű. 🕈     | 11.2501  | 0.0001    | 1         | <br>   |               |
| 8           | Width of Ope                           | 11.2500 |        | 0.0025   | 11.2501  | 0.0001    | 1         |        |               |
| 9           |                                        | 8.317   | 25     | -0.0025  | 8.3171   | -0.0004   | 2         | <br>   |               |
| 10          | Pla. 1056. A 0 0.002                   | 100     | 0.0020 | 0.0000   | 0.0006   | 0.0006    | 4         |        |               |
| 11          | te Ref A // 0.00                       | 0.000   | 0.0050 | 0.0000   | 0.0036   | 0.0036    | *         |        |               |
| 11          | Cross @ 0.005 A                        | 6.8368  | 0.0025 | -0.0025  | 6.8364   | -0.0004   | 1         |        |               |
| 12          | Bottom plane cross 0 0.002             | 0.0000  | 0.0020 | 0.0000   | 0.0011   | 0.0011    | 4         |        |               |
| 13          | Depth of recess for solder foil        | 0.0300  | 0.0100 | 0.0000   | 0.0382   | 0.0082    | *         |        |               |
| 14          | Diameter undulation                    | 5.8478  | 0.0025 | -0.0025  | 5.8469   | -0.0009   | *         | <br>   |               |
| 15          | 0.002                                  | 0.0000  | 0.0020 | 0.0000   | 0.0004   | 0.0004    | 1         |        |               |
| 17          | © 0.003 B                              | 0.0000  | 0.0030 | 0.0000   | 0.0012   | 0.0012    | 4         |        |               |
| 9           | Measurand t                            | 1.4807  | 0.0025 | -0.0025  | 1.4801   | -0.0006   | 1         | <br>   |               |
| 18          | Undulation - 0.005 A B                 | 0.000.  | 2050   | 0.0000   | 0.0038   | 0.0029    | × .       |        |               |
| 19          | Cross 0.005 A B                        | 21/2    | 050    | 0.0000   | 0.0026   | 0.0015    | *         | <br>   |               |
| Dis         | sk au 12                               | 0       |        |          | 5        |           |           |        |               |
| Dis<br>d    | sk 21                                  | 0       |        |          | 5        |           |           |        |               |
| Di:         | sk an                                  | 0       |        |          | 5        |           | 9         | 0      |               |
| Dis         | sk au                                  | 0       |        |          |          | 1 × 1     |           | 0      |               |
| Di:         | sk au                                  | 0       |        |          |          |           |           | 0      | - Contraction |
|             | sk au                                  |         |        |          |          |           |           | 0      |               |
|             | sk au<br>sk au                         | 0       |        |          |          |           |           | 0      |               |



### **SEM** inspections





#### G. Riddone, CLIC Workshop, 14/10/2009

8

\_\_\_\_



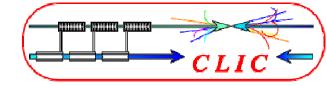
| •    |     |
|------|-----|
| eani | Ing |

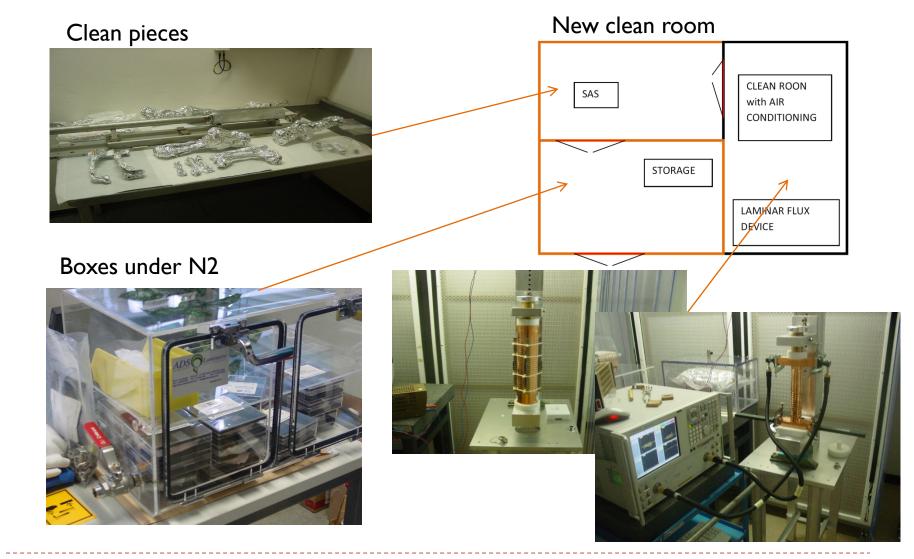
|        | MF                                                                                         | D Metal Finishing Proce                                                                                          | ess Specif                                                                                                                                  | fications                         |         | Chemical Cleaning of Oxygen Free Elect                                                                  | ronic Grade (O.F.E.) Copper    |  |
|--------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|---------------------------------------------------------------------------------------------------------|--------------------------------|--|
|        |                                                                                            |                                                                                                                  |                                                                                                                                             |                                   | Step 5  | Cold tap water rinse for 1 minu                                                                         | te.                            |  |
|        |                                                                                            | Process Specificatio                                                                                             | n C01a                                                                                                                                      |                                   | Step 6  | Immerse in the following solution for a maximum of 5 secor<br>depending on the surface finish required: |                                |  |
| Che    | emical                                                                                     | Cleaning of Oxygen Free E                                                                                        | lectronic                                                                                                                                   | Grade (O.F.E.)                    |         | depending on the surface mush                                                                           | required.                      |  |
|        |                                                                                            | Copper                                                                                                           |                                                                                                                                             |                                   |         | Phosphoric Acid, 75%                                                                                    | 21 gallons                     |  |
|        |                                                                                            |                                                                                                                  |                                                                                                                                             |                                   |         | Nitric Acid, 42° Baumé                                                                                  | 7 gallons                      |  |
|        |                                                                                            |                                                                                                                  | Date:                                                                                                                                       | 6/8/94                            |         | Acetic Acid, Glacial                                                                                    | 2 gallons                      |  |
|        |                                                                                            |                                                                                                                  | Prepared by                                                                                                                                 | K. Narula                         |         | Hydrochloric Acid                                                                                       | 19.2 fluid ounces              |  |
|        |                                                                                            |                                                                                                                  | Checked by                                                                                                                                  | A. Farvid                         |         | Temperature                                                                                             | Room                           |  |
| Caut   | ion!                                                                                       | Exercise caution in their use. Do no                                                                             | he chemicals used in this process are solvents, acidic, and alkaline.<br>xercise caution in their use. Do not breathe vapors. Avoid contact |                                   | Step 7  | Cold tap water rinse for minima disappears.                                                             | um of 2 minutes until the fil: |  |
|        |                                                                                            | with skin, eyes, and clothing by us<br>Provide adequate ventilation.                                             | ing appropri-                                                                                                                               | ate safety equipment.             | Step 8  | Step 8 Cold deionized water rinse for 1 minute (minimum<br>1,000,000 ohms cm).                          |                                |  |
|        | Carefully read and observe o<br>MSDSs and Table I of Hazar<br>Metal Finishing Industry (in |                                                                                                                  | hemicals Co                                                                                                                                 | mmonly Used in the                | Step 9  | Step 9 Cold deionized water rinse for 1 minute (minimum res<br>1,000,000 ohms cm).                      |                                |  |
| 1.0    | Scope                                                                                      | Metal Philshing Industry (in none                                                                                | or this book                                                                                                                                | × 17.                             | Step 10 | Hot deionized water rinse for 3 1,000,000 ohms cm).                                                     | 0 seconds (minimum resistiv    |  |
|        |                                                                                            | This document describes the chemic<br>Turned Accelerator O.F.E. copper. T<br>which are used in brazing operation | hese are polis                                                                                                                              |                                   | Step 11 | Immerse in analytical reagent g<br>seconds.<br>Note: To avoid breathing the vapo<br>thoroughly.         |                                |  |
| 2.0    | Sequen                                                                                     | ce                                                                                                               |                                                                                                                                             |                                   | Step 12 | Blow dry with a dry nitrogen bl                                                                         | last.                          |  |
|        | Step 1                                                                                     | Vapor degrease in 1,1,1 trichloroeth                                                                             | ane <sup>1</sup> or equiv                                                                                                                   | valent degreaser for 5            | Step 13 | Dry in air oven at 150°F.                                                                               |                                |  |
|        |                                                                                            | minutes.<br>Note: To reduce solvent concentration                                                                |                                                                                                                                             |                                   | Step 14 | Wrap according to customer ins                                                                          | structions.                    |  |
|        | Step 2                                                                                     | parts should be lowered and ren<br>Alkaline soak clean in Enbond Q52                                             |                                                                                                                                             |                                   |         |                                                                                                         |                                |  |
|        | Step 3                                                                                     | Cold tap water rinse for 2 minutes.                                                                              |                                                                                                                                             |                                   |         |                                                                                                         |                                |  |
|        | Step 4                                                                                     | Immerse in 50% hydrochloric acid a                                                                               | at room temp                                                                                                                                | erature for 1 minute.             |         |                                                                                                         |                                |  |
|        |                                                                                            | oethane, product of Dow Chemical Co.<br>7, product of Enthone Inc., New Haven, CT.                               |                                                                                                                                             |                                   |         |                                                                                                         |                                |  |
| 19 Mar | ch 1998                                                                                    | 07-03-04-00                                                                                                      | Proces                                                                                                                                      | s Specification C01a, Page 1 of 2 |         |                                                                                                         |                                |  |
|        |                                                                                            |                                                                                                                  |                                                                                                                                             |                                   |         |                                                                                                         |                                |  |

SLAC cleaning procedure as a baseline

For degreasing Trichloroethane → at SLAC replaced by Perchloroethylene

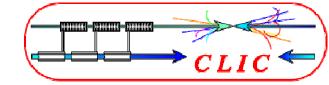
**CERN proposal:** (Firm AVANTEC Performance Chemicals): - TOPKLEAN MC 20A - PROMOSOLV 711PA

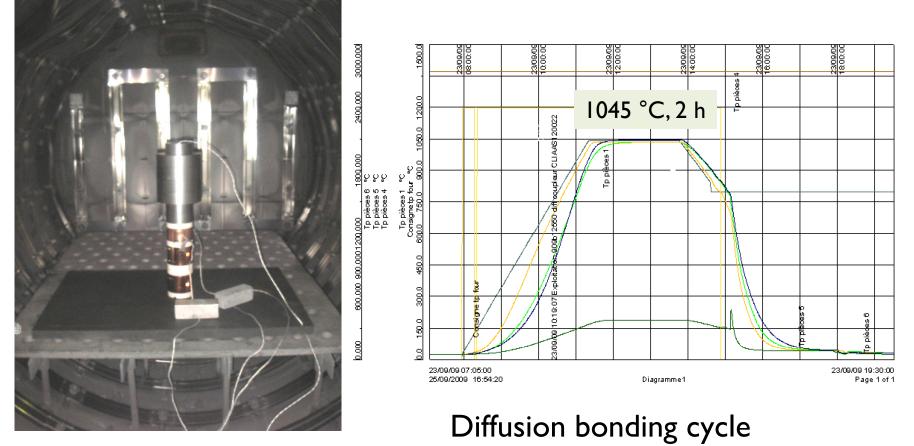




Tool for holding the disks

To avoid the solution entering the tuning holes **CERN proposal:** screws with O-rings



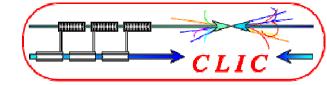

### Clean room and storage








### Diffusion bonding



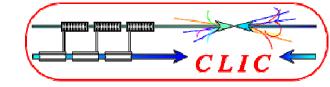


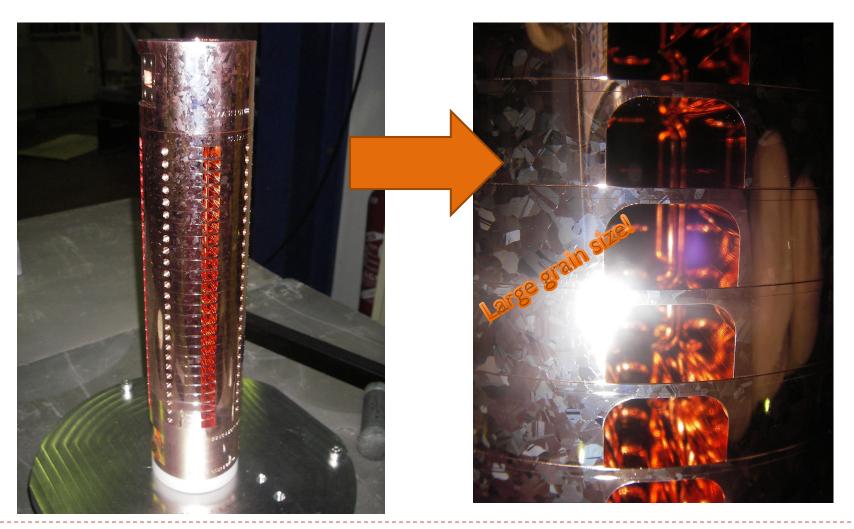

H<sub>2</sub> pure bonding ~ 4 bar



### Assembly





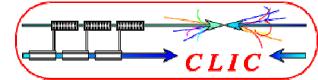


Assembly made on V-blocks Verification of the assembly (before and after bonding) with a new measurement column: straightness and tilt





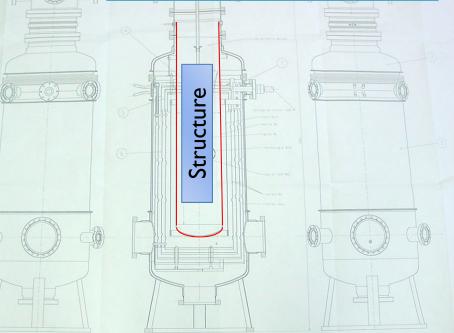
Accelerating structure TD24 after diffusion bonding at 1035 °C under H<sub>2</sub>





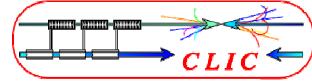


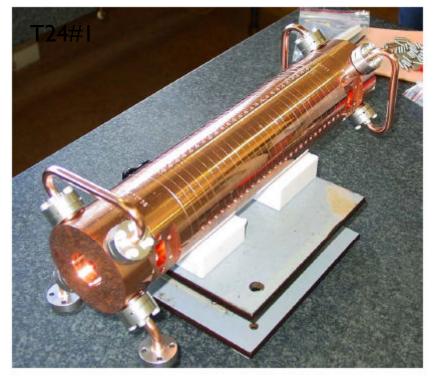

### Vacuum baking




Found at CERN a furnace which an internal cylinder in Nb Tests on the furnace performed last week satisfactory Same SLAC cycle will be followed

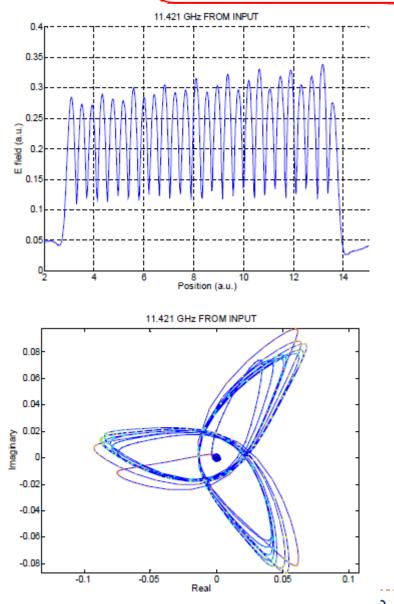






New top flange and supports under fabrication

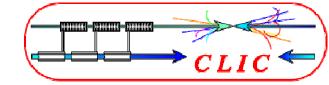





### RF check and tuning






### Bead pulling at 11.421GHz after baking

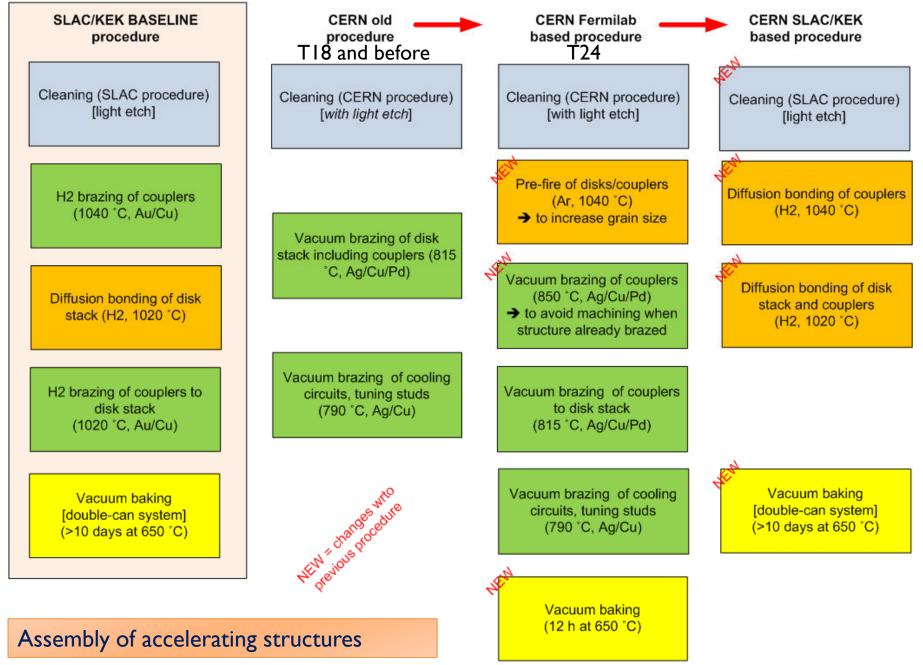
# Before shipping RF check and tuning is done and results are good

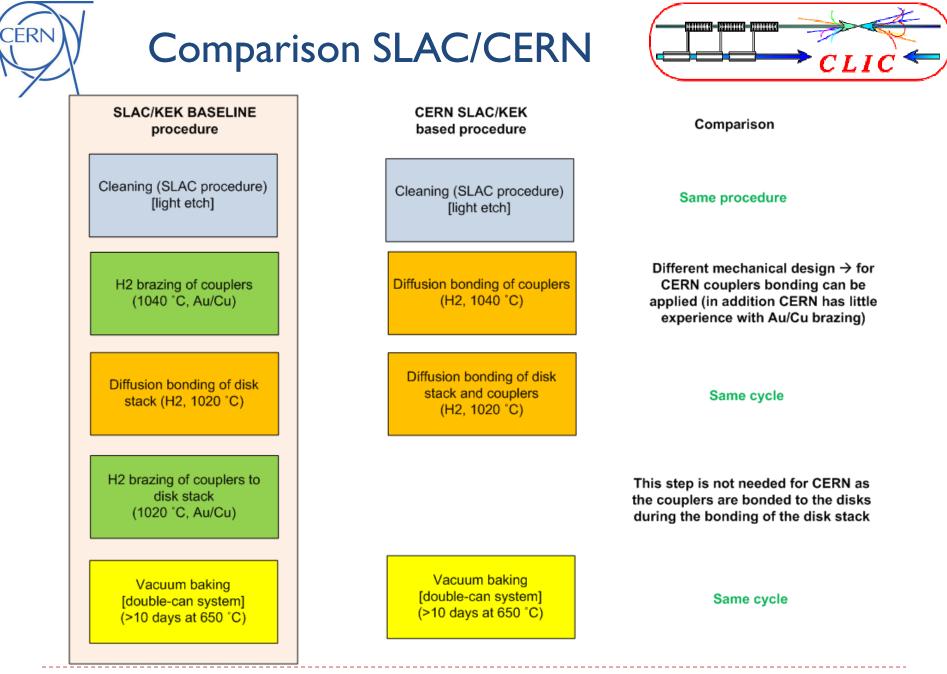





### Packaging for transport




"Sealing" machine











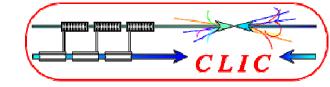




G. Riddone, CLIC Workshop, 14/10/2009

18



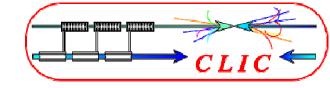

### Summary of comparison



|                                | SLAC/KEK     | Fermilab      | CERN old          | CERN new<br>(SLAC/KEK<br>based) |
|--------------------------------|--------------|---------------|-------------------|---------------------------------|
| Diamond<br>machining           | $\checkmark$ | $\checkmark$  | $\checkmark$      | $\checkmark$                    |
| Etch                           | $\checkmark$ | $\checkmark$  | $\checkmark$      | $\checkmark$                    |
| 1000 °C pre-fire               |              | √ (Ar)        |                   |                                 |
| ~ 1000 °C<br>diffusion bonding | $\checkmark$ |               |                   | $\checkmark$                    |
| ~ 1000 °C brazing              | $\checkmark$ |               |                   |                                 |
| ~ 800 °C brazing               |              | √ (Ar, Au/Cu) | √ (Vacuum, Ag/Cu) | $\checkmark$                    |
| Vacuum baking                  | $\checkmark$ | $\checkmark$  |                   | $\checkmark$                    |
| Tank/sealed                    | SEALED       | SEALED        | SEALED            | TANK/SEALED                     |



### Status - assembly




### <u>||.4 GHz</u>

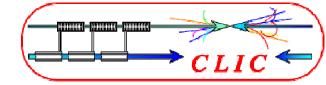
- Two damped accelerating structures assembled TD18 (TANK) and TD24 (TANK)
  - TD18- old CERN procedure
  - TD24 diffusion bonding, no etching to be baked
- Disks for two undamped T18 with SLAC/KEK mechanical design at CERN (SEALED) – to be bonded
- Disks for undamped T24 (SEALED) at CERN to be bonded
- <u>12 GHz</u>
- Disks for two damped TD24 (TANK) at CERN for the two-beam test stand – to be bonded

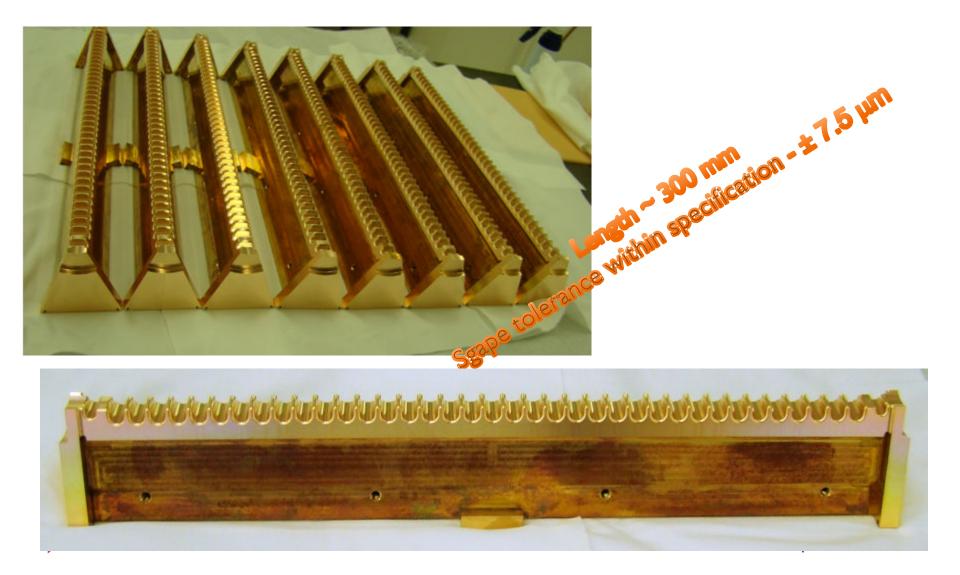


### Status - machining



### <u>||.4 GHz</u>

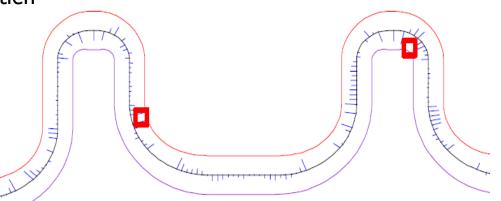

- Disks for two undamped T24 smaller diameter (45 mm, SEALED) end of Nov 2009
- Disks for two damped CD10 (vg 1.35) (80 mm, SEALED) end of Dec 2009
- TD24 sealed to be launched in fabrication


<u>12 GHz</u>

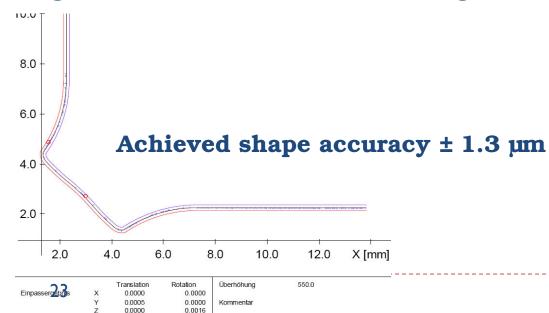
- Disks for one undamped T24 (80 mm, TANK) beginning of Nov 2009
- Disks for two damped TD24 smaller diameter (45 mm, TANK) beginning of Nov 2009



PETS bars at 11.424 GHz with damping material to be tested at SLAC





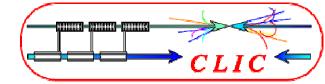


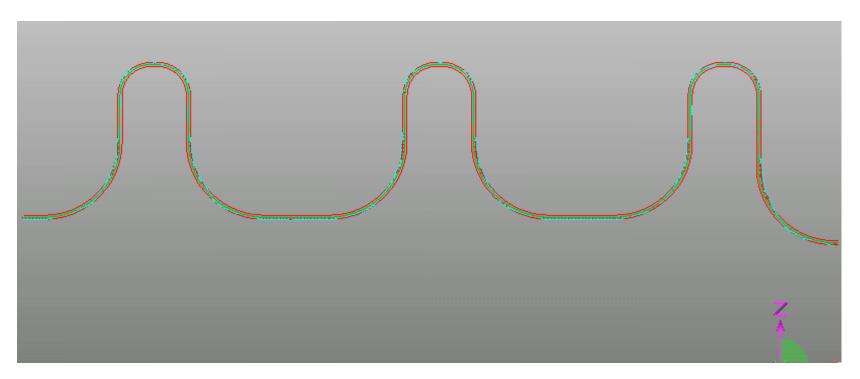
QUADRANTS - HDS thick qualification part according to CLIAAS300062 - KERN (DE)

S.Atieh



### Achieved shape accuracy ± 2.1 µm Roughness Ra = 86 nm – 30 nm according to ISO 97

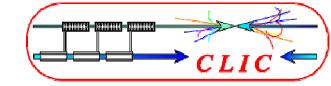







QUADRANTS - HDS thick qualification part according to CLIAAS300062 – DMP (SP)






Origins translation: X 16  $\mu m$  and Z -8  $\mu m$  Shape accuracy is respected  $\pm$  2.5  $\mu m$ 



### Conclusions



- NLC/JLC fabrication technology validated for CLIC accelerating structure to 100 MV/m
- CERN is implementing SLAK/KEK procedure
  - Cleaning (etching)
  - Diffusion bonding at ~1040 °C (H<sub>2</sub>)
  - Vacuum baking
- All shipped structures passed successfully all fabrication steps and RF checks
- T18 KEK/SLAC is being prepared (proposal for next CERN structure)
- TD24 sealed to be launched