Status of the ATF2 Ultra-Low β FFS.

Presenter: Edu Marin eduardo.marin.lacoma@cern.ch

Acknowledgments : Brett Parker, Glen White, Cherrill Spencer and Yannis Papaphilippou.

<u>PLAN OF THE TALK</u>

- 1. ATF2 Ultra-Low β^* Lattice problem (multipoles of QF1).
- 2. Possible Solutions:
 - 1. Reducing emittance by a SC Wiggler in DR.
 - 2. Correction by a Dodecapole magnet.
 - 3. Replacing QF1 by a SC Q.
 - 4. Designing a new ATF2 Ultra-Low β_v^* lattice.
- 3. Feasibility of ATF2 Ultra-Low β_v^* Lattice.
 - 1. Beam Size along the beam line.
 - 2. New current values for the magnets.
- 4. Tuning the ATF2 Ultra-Low β_v^* Lattice.
 - 1. Horizontal and Vertical Misalignments.
 - 2. KNOBS for β -functions, Dispersion and coupling.
 - 3. Strategy for the first Tuning.
- 5. Results for the First Tuning Study.
 - 1. Results for σ_{v} obtained via RMS beam size.
 - 2. Results for σ_v obtained via a Gaussian fit.
- 6. Conclusions and Future Plans.

1. BEAM SIZE DEPENDENCE ON $\boldsymbol{\epsilon}_{_{\boldsymbol{x}}}$ FOR ULTRA-LOW $\boldsymbol{\beta}^*$ LATTICE.

POSSIBLE SOLUTIONS:

- 1. Reducing ε_x from the DR.
- 2. Implementing a Dodecapole magnet.
- 3. Using a Superconducting for the QF1 with smaller errors.
- 4. Developing a new lattice reducing β_x at QF1.

For further details see: Mechanical measurements of ATF2 Final Doublet magnets. Cherrill Spencer. ATF2 weekly meeting, October 2008.

β functions and beam size (φ $_x=6\mu$ m)@ IP (no errors):

$$\beta_{x} = 4.0 \text{ mm}$$
 $\sigma_{x} = 2.14 \text{ } \mu\text{m}$

•
$$\beta_y = 25.0 \,\mu m$$
 $\sigma_y = 22.8 \,nm$

 β functions and beam size ($\alpha_x = 6\mu m$) @ IP (with errors):

•
$$\beta_x = 4.0 \text{ mm}$$
 $\sigma_x = 3.9 \mu \text{m}$

• $\beta_y = 25.0 \,\mu m$ $\sigma_y = 92.8 \,nm$

Due to multipolar components measurements of QF1:

QF1_Octopole = 0.0056 % @ r_o=10mm QF1_Dodecapole = 0.035 % @ r_o=10mm

Reduced ε_x from the DR.

100

order 1

Introducing a SuperConducting Wiggler

in the DR. 2 cases:

2.1.

2.2

Dodecapole's Optimization

Using a Superconducting FD.

Using a SC Q, a relative octopolar and dodecapolar components are introduced about 2 parts of 10000 at $r_0 = 28$ mm.

QF1_Multipole = 0.02%

Comparing with the NC ones at $r_0 = 28$ mm,

 $QF1_Octopole = 0.04\%$ $QF1_Dodecapole = 2.2\%$

IP beam sizes for $\varphi_x = 6\mu m$ $\sigma_y = 37.13 \text{ nm}$; $\sigma_x = 3.21 \mu m$

A SC Q helps but not enough.

IP beam sizes for reduced φ_{x} : $\sigma_{y, 30\%} = 27.76 \text{ nm}; \sigma_{x, 30\%} = 2.55 \mu \text{m}$ $\sigma_{y, 50\%} = 24.83 \text{ nm}; \sigma_{x, 50\%} = 2.25 \mu \text{m}$

For further details see: Specification/Parameters of SC Q and Cryogenics. Brett Parker. ATF2 weekly meeting, September 2009.

2009.10.15

2.3

2.4 Matching for a new Ultra Low β_v^* Lattice.

- Matching via Mad-x & Mapclass
 - Including Multipolar errors.
 - Constraints: increasing β_x @ IP
 - Variables: Quads & Sexts strengths

Results:

- Beta functions @ IP:
 - $\beta_x = 8.4608 \text{ mm}$; $\beta_y = 31.5727 \text{ }\mu\text{m}$
- Beam sizes @ IP $\mathfrak{E}_{x} = 6\mu m$):

•
$$\sigma_x = 4.4 \ \mu m$$
; $\sigma_y = 23.8 \ nm$

2009.10.15

3.1.1 Beam Size along ATF2 Ultra-Low β_v^*

Quads: 16mm.

Sexts: 20.6mm.

FD: 25mm.

Minimum number of sigmas equals to 8.1 corresponding to σ_x at SF1.

3.1.2 Beam Size along ATF2 Ultra-Low β^* Lattice

Minimum number of sigmas equals to 5.7 corresponding to σ_x at SF1.

For SC Q the Number of σ_v increases up to 6.4.

3.2. New current values for the Magnets

Magnet	Nom. Strength	New Strength	ratio	Nom. Current	New Current	Max. current
[FFS]	[m-3]	[m-3]		[A]	[A]	[A]
SF6FF	8.565	6.581	0.77	15.548	11.947	50
SF5FF	-0.791	-2.165	2.74	1.404	3.843	50
SD4FF	14.910	15.813	1.06	27.498	29.163	50
SF1FF	-2.578	-2.538	0.98	3.819	3.760	50
SD0FF	4.312	4.441	1.03	6.348	6.538	50
	[m-2]	[m-2]				
QM16FF	0.582	0.468	0.80	27.080	21.774	150
QM15FF	-0.320	0.576	1.80	14.880	26.826	150
QM14FF	-1.120	-1.349	1.20	52.510	63.257	150
QM13FF	0.911	0.938	1.03	42.600	43.868	150
QM12FF	0.336	0.314	0.94	15.630	14.620	150
QM11FF	0.000	0.000		0.000	0.000	150
QD10FF	-0.290	-0.290	1.00	13.500	13.494	50
QF9FF	0.379	0.379	1.00	17.620	17.620	50
QD8FF	-0.604	-0.604	1.00	28.120	28.106	50
QF7FF	0.550	0.481	0.88	25.590	22.391	50
QD6FF	-0.602	-0.582	0.97	28.030	27.093	50
QF5FF	0.376	0.375	1.00	17.500	17.458	50
QD4FF	-0.297	-0.298	1.00	13.810	13.849	50
QF3FF	0.553	0.576	1.04	25.710	26.785	50
QD2BFF	-0.199	-0.265	1.34	9.230	12.323	50
QD2AFF	-0.290	-0.239	0.82	13.480	11.099	50
QF1FF	0.742	0.739	1.00	71.630	71.386	100
QD0FF	-1.364	-1.365	1.00	131.800	131.864	150

No significant changes are observed comparing with nominal values.

4.1. Horizontal and Vertical Misalignments

- Random Gaussian distribution within 30 µm, for the initial transversal displacements to all Quads & Sext:
- Initial σ_v [0.2 µm , 1.4 µm]
- Tuning via MAD-X & MAPCLASS using Simplex algorithm
- Statistical Study formed by 100 different seeds.

4.2. Knobs for the β -functions, Dispersion and coupling.

Displacing sextupoles in the transverse plane, we construct the knobs.

		SF6_dx	SF5_dx	SD4_dx	SF1_dx	SD0_dx
		[nm]	[nm]	[nm]	[nm]	[nm]
Displacing horizontally the	βx	44.25	88.41	-0.57	14.95	1.12
sextupoles we have obtained the	β _x	-1.06	31.94	27.15	-49.38	-76.18
knobs, whose controls β -functions \rightarrow		-41.29	-89.61	0.75	-16.06	-2.49
and the horizontal dispersion	α_y	-0.49	31.46	25.85	-49.52	-76.74
and the nonzontal dispersion.	δχ	32.77	-80.68	0.87	48.43	-8.37

SD4_dy	SF1_dy	SD0_dy
[nm]	[nm]	[nm]
-64.35	9.96	-30.25
60.61	-8.72	27.44
-59.09	14.53	-36.55
63.14	27.66	-31.58
36.43	-3.84	-78.73
	SD4_dy [nm] -64.35 60.61 -59.09 63.14 36.43	SD4_dy SF1_dy [nm] [nm] -64.35 9.96 60.61 -8.72 -59.09 14.53 63.14 27.66 36.43 -3.84

Displacing vertically the sextupoles we have obtained the knobs, whose controls the couplings and the vertical dispersion.

4.3. Strategy of the First FFS Tuning.

- Assumptions.
 - Including:
 - Multipolar errors.
 - Measurement error:
 - $\sigma_{x}(1\mu m), \sigma_{y}(2nm)$
 - Constraint: minimize σ_{y}
 - Variables: Transversal
 Misalignments of Quads & Sext.

- <u>Tuning via Mad-x & Mapclass using the</u>
 <u>Simplex algorithm.</u>
 - Horizontal and Vertical displacement of Quadrupoles and Sextupoles.
 - Implementation of horizontal knob to reduce β_y function.
 - Implementation of vertical knobs to reduce the coupling <p_x,y> and vertical dispersion.

5.1. Results of σ_v in terms of RMS beam size.

2009.10.15

CLIC Workshop 2009

5.2. Results for σ_v obtained for the CORE Beam Size.

- A Gaussian distribution is fitted for the 10000 tracked particles .
- 83% of the scenarios have a final $\sigma_y < 28$ nm. (Gaussian Fit)

6. CONCLUSIONS & FUTURE PLANS

- Possible strategies to achieve ATF2 Ultra-Low β^{*} Lattice:
 - a) 2 SC Wigglers of 4T $\sigma_y = 28 \text{ nm}$ c) 1 (2) SC W + SC Q $\sigma_y = 27 \text{ nm} (\sigma_y = 25 \text{ nm})$ b) 1 (2) SC W + Dodecapole magnet $\sigma_y = 29 \text{ nm} (\sigma_y = 26 \text{ nm})$ d) Reducing $\beta_x @ \text{QF1}$ $\sigma_y = 23.8 \text{ nm}$
- Statistical Tuning Study shows 83% of the seeds reach $\sigma_v < 28$ nm (Gaussian Fit).

To be done...

- Inserting an Octopole magnet.
- Evaluate the beam size as the Shintake Monitor does.
- A more Realistic tuning, including: tilts, mispowerings, ground motion....
- Study at intermediate Vertical Beam Size stages.