Solenoid and SR studies

B. Dalena, D. Schulte, R. Tomás, G. Zamudio

Outline

- Incoherent Synchrotron Radiation in the CLIC BDS
 - Oide's limit
 - Beam size growth and Luminosity loss
- Incoherent synchrotron radiation in the detector solenoid
 - Interaction Region Solenoid effects
 - Luminosity loss due to synchrotron radiation

CLIC BDSs

Oide Effect

focusing of electron beams is limited due to the emission of incoherent synchrotron radiation in the final focusing lens.

IP beam sizes

PLACET simulation

CLIC BDSs 1% flat beam energy spread σ_y^* (rms) σ_y^* (Gaussian fit) [nm] [nm] w/o ISR 1.0 0.8 3 TeV CM 1.0 2.0 ISR W σ_v^* (rms) [nm]w/o ISR 5.8 0.5 TeV CM ISR 5.9 W

Very good agreement between PLACET and DIMAD σ_y^* (rms) with a 0.4% Gaussian energy spread beam.

Luminosity Loss due to ISR in CLIC-BDS

PLACET + GUINEA PIG

ALL BDS	L/LO		
ALL ISR OFF	1,00±0.02		
ALL ISR ON	0,78±0.02		
ISR QUAD ON/rest off	0,90±0.02		
ISR MULTI ON/rest off	1,00+0.02		
ISR SBEND ON/rest off	0,86±0.02		
ISR FD off/rest on	0,87+0.02		
ISR FD on/rest off	0,90±0.02		
COLL ON/FFS OFF	0,98+0.02		
COLL OFF/FFS ON	(0,80±0.03)		

Luminosity in the peak per bunch crossing in m⁻² Nominal CLIC beam parameters

~20% of luminosity loss due to synchrotron radiation:

-~ 10% of luminosity loss due to Final Doublet.

-~ 10% of luminosity loss due to SBEND in the FFS.

CLIC-BDS at 0.5 TeV CM: < 1%

Solenoid Effects

- *Weak focusing*: in the two transverse planes
- *Orbit deviation*: the beam is bent as it traverses the magnetic . field
- Coupling between x-y plane: the particle position in one plane depends on the position in the other plane
- *Dispersion*: particles at lower energies experience a larger deflection than those at higher energies
- The beam emits *Incoherent Synchrotron Radiation* (ISR) as it is deflected

Schematic view of the two beam colliding with a crossing angle in the detector solenoid.

Х

Z

Detector Solenoid magnetic fields

 B_{x} component of solenoid fields in the beamline reference system

Old SiD: <u>http://www-project.slac.stanford.edu/lc/bdir/Meetings/beamdelivery/2005-10-04/index.htm</u> New SiD: Kurt Krempetz (FNAL) ILD (AntiDiD): A. P. Sailer (CERN) Mokka database

Orbits

Vertical offset correction (1/2)

- Compensation of detector solenoid effects:
 - J.J. Murray, SLAC-CN-237
 - Y. Nosochkov and A. Seryi, PRST-AB 8, 021001 (2005)
 - B.Parker and A. Seryi, LCC-0143

Vertical offset correction (2/2)

Vertical dispersion and <x',y> coupling

rad 700 500 600 500 400 400 < x',y > coupling and -10 -10 30 300 vertical dispersion at IP 200 20 -20 200 100 a) Tracking trough FFs 0.04 0.05 0.06 0.07 0.08 -0.02 0.02 4.45 -4.4 and IP Solenoid **y [μm]** y [μm] **y** [μm] b) Tracking trough FFs 2 6004 م \$004' 120 180 and IP Solenoid + 160 100 0.002 0.002 0.002 140 anti-solenoids 200 120 covering QDO 100 -0.002 100 -0.002 -0.002c) Tracking trough FFs -0.004 -0.00/ -0.00 only 0 y [μm] 0.04 0.05 0.06 0.07 0.08 -4.45 -0.02 0.02 y [µm] **γ [μm**] Mean: -4.4213 Mean: 0.0687 Mean: -0.0000 | <u>%</u>5000⊧ ა წ RMS: 0.0288 RMS: 0.0015 RMS: 0.0010 Residual <x',y> coupling 008EC ᡁᡵᡊᢧᡌ᠋᠋ᠧᠵᡀ particl 0005 <u>.9</u>6000 and dispersion can be 100 5000 compensated using the 600 3000 4000 500 other FFs magnets 400F 3000 2000 300E 2000 200E 1000F 1000 100Ē 14 October -4.45 0.05 0.06 0.07 0.08 -0.02 0.02 -4.4 y [μm] **y [μm] y [μm]**

150

Incoherent Synchrotron Radiation

- In order to evaluate ISR effect (O(nm)) we need to consider fully compensated optical effects ($O(\mu m)$)
- Incoherent synchrotron radiation due to detector solenoid is evaluated by tracking, a compensated beam (from backtracking), the taking into account Monte Carlo synchrotron radiation implemented in PLACET

Luminosity Loss

Мар	Bz [T]	L[m]	Lumi loss [%]
Old SiD	5	2.8	~4.0
New SiD	5	2.8	~3.0
ILD	4	3.7	~4.0
ILD + AntiDiD	4	3.7	~25.0

luminosity calculation by GUINEA-PIG

- CLIC half horizontal crossing angle 10 mrad
- ILD values are computed with QD0 offset: 5μm (ILD),
 43.5μm (ILD+AntiDiD)

Conclusion

- Luminosity Loss due to ISR in CLIC-BDS at 3TeV CM
 - ~ 20% luminosity loss
 - Horizontal and Vertical IP spot sizes increase
- Interaction region studies
 - Luminosity loss due to detector solenoids depend on field shape and its overlap with QDO
 - AntiDiD increases the luminosity loss up to 25%
 - Anti-Solenoids (bucking coils covering QDO) reduces beam distortion due to Solenoid and QDO overlap (effect of radiation to be evaluated)

DiD - AntiDiD

DiD

- Coil wound on detector solenoid giving transverse field (Bx)
- It can zero y and y' at IP
- But the field acting on the outgoing beam is bigger than solenoid detector alone ⇒ pairs diffuse in the detector

AntiDiD

- Reversing DiD's polarity and optimizing the strength, more than 50% of the pairs are redirected to the extraction apertures

<u>A. Seryi</u>

14 October

